Exemple #1
0
    def run_region(self, kr, lon, lat, radius):
        #    TODO: for now we have to read/create the allsky maps each in each job
        #    because we can't pickle <functools._lru_cache_wrapper object
        #    send this back to init when fixed

        # exposure
        exposure_hpx = Map.read(
            "$GAMMAPY_DATA/fermi_3fhl/fermi_3fhl_exposure_cube_hpx.fits.gz"
        )
        exposure_hpx.unit = "cm2 s"

        # iem
        iem_filepath = BASE_PATH / "data" / "gll_iem_v06_extrapolated.fits"
        iem_fermi_extra = Map.read(iem_filepath)
        # norm=1.1, tilt=0.03 see paper appendix A
        model_iem = SkyDiffuseCube(
            iem_fermi_extra, norm=1.1, tilt=0.03, name="iem_extrapolated"
        )

        # ROI
        roi_time = time()
        ROI_pos = SkyCoord(lon, lat, frame="galactic", unit="deg")
        width = 2 * (radius + self.psf_margin)

        # Counts
        counts = Map.create(
            skydir=ROI_pos,
            width=width,
            proj="CAR",
            frame="galactic",
            binsz=1 / 8.0,
            axes=[self.energy_axis],
            dtype=float,
        )
        counts.fill_by_coord(
            {"skycoord": self.events.radec, "energy": self.events.energy}
        )

        axis = MapAxis.from_nodes(
            counts.geom.axes[0].center, name="energy_true", unit="GeV", interp="log"
        )
        wcs = counts.geom.wcs
        geom = WcsGeom(wcs=wcs, npix=counts.geom.npix, axes=[axis])
        coords = geom.get_coord()
        # expo
        data = exposure_hpx.interp_by_coord(coords)
        exposure = WcsNDMap(geom, data, unit=exposure_hpx.unit, dtype=float)

        # read PSF
        psf_kernel = PSFKernel.from_table_psf(
            self.psf, geom, max_radius=self.psf_margin * u.deg
        )

        # Energy Dispersion
        e_true = exposure.geom.axes[0].edges
        e_reco = counts.geom.axes[0].edges
        edisp = EDispKernel.from_diagonal_response(e_true=e_true, e_reco=e_reco)

        # fit mask
        if coords["lon"].min() < 90 * u.deg and coords["lon"].max() > 270 * u.deg:
            coords["lon"][coords["lon"].value > 180] -= 360 * u.deg
        mask = (
            (coords["lon"] >= coords["lon"].min() + self.psf_margin * u.deg)
            & (coords["lon"] <= coords["lon"].max() - self.psf_margin * u.deg)
            & (coords["lat"] >= coords["lat"].min() + self.psf_margin * u.deg)
            & (coords["lat"] <= coords["lat"].max() - self.psf_margin * u.deg)
        )
        mask_fermi = WcsNDMap(counts.geom, mask)

        # IEM
        eval_iem = MapEvaluator(
            model=model_iem, exposure=exposure, psf=psf_kernel, edisp=edisp
        )
        bkg_iem = eval_iem.compute_npred()

        # ISO
        eval_iso = MapEvaluator(model=self.model_iso, exposure=exposure, edisp=edisp)
        bkg_iso = eval_iso.compute_npred()

        # merge iem and iso, only one local normalization is fitted
        dataset_name = "3FHL_ROI_num" + str(kr)
        background_total = bkg_iem + bkg_iso
        background_model = BackgroundModel(
            background_total, name="bkg_iem+iso", datasets_names=[dataset_name]
        )
        background_model.parameters["norm"].min = 0.0

        # Sources model
        in_roi = self.FHL3.positions.galactic.contained_by(wcs)
        FHL3_roi = []
        for ks in range(len(self.FHL3.table)):
            if in_roi[ks] == True:
                model = self.FHL3[ks].sky_model()
                model.spatial_model.parameters.freeze_all()  # freeze spatial
                model.spectral_model.parameters["amplitude"].min = 0.0
                if isinstance(model.spectral_model, PowerLawSpectralModel):
                    model.spectral_model.parameters["index"].min = 0.1
                    model.spectral_model.parameters["index"].max = 10.0
                else:
                    model.spectral_model.parameters["alpha"].min = 0.1
                    model.spectral_model.parameters["alpha"].max = 10.0

                FHL3_roi.append(model)
        model_total = Models([background_model] + FHL3_roi)

        # Dataset
        dataset = MapDataset(
            models=model_total,
            counts=counts,
            exposure=exposure,
            psf=psf_kernel,
            edisp=edisp,
            mask_fit=mask_fermi,
            name=dataset_name,
        )
        cat_stat = dataset.stat_sum()

        datasets = Datasets([dataset])
        fit = Fit(datasets)
        results = fit.run(**self.optimize_opts)
        print("ROI_num", str(kr), "\n", results)
        fit_stat = datasets.stat_sum()

        if results.message != "Optimization failed.":
            datasets.write(path=Path(self.resdir), prefix=dataset.name, overwrite=True)
            np.savez(
                self.resdir / f"3FHL_ROI_num{kr}_fit_infos.npz",
                message=results.message,
                stat=[cat_stat, fit_stat],
            )

            exec_time = time() - roi_time
            print("ROI", kr, " time (s): ", exec_time)

            for model in FHL3_roi:
                if (
                    self.FHL3[model.name].data["ROI_num"] == kr
                    and self.FHL3[model.name].data["Signif_Avg"] >= self.sig_cut
                ):
                    flux_points = FluxPointsEstimator(
                        e_edges=self.El_flux, source=model.name, n_sigma_ul=2,
                    ).run(datasets=datasets)
                    filename = self.resdir / f"{model.name}_flux_points.fits"
                    flux_points.write(filename, overwrite=True)

            exec_time = time() - roi_time - exec_time
            print("ROI", kr, " Flux points time (s): ", exec_time)
Exemple #2
0
    def run_region(self, kr, lon, lat, radius):
        #    TODO: for now we have to read/create the allsky maps each in each job
        #    because we can't pickle <functools._lru_cache_wrapper object
        #    send this back to init when fixed

        log.info(f"ROI {kr}: loading data")

        # exposure
        exposure_hpx = Map.read(
            "$GAMMAPY_DATA/fermi_3fhl/fermi_3fhl_exposure_cube_hpx.fits.gz")
        exposure_hpx.unit = "cm2 s"

        # psf
        psf_map = PSFMap.read(
            "$GAMMAPY_DATA/fermi_3fhl/fermi_3fhl_psf_gc.fits.gz",
            format="gtpsf")
        # reduce size of the PSF
        axis = psf_map.psf_map.geom.axes["rad"].center.to_value(u.deg)
        indmax = np.argmin(np.abs(self.psf_margin - axis))
        psf_map = psf_map.slice_by_idx(slices={"rad": slice(0, indmax)})

        # iem
        iem_filepath = BASE_PATH / "data" / "gll_iem_v06_extrapolated.fits"
        iem_fermi_extra = Map.read(iem_filepath)
        # norm=1.1, tilt=0.03 see paper appendix A
        model_iem = SkyModel(
            PowerLawNormSpectralModel(norm=1.1, tilt=0.03),
            TemplateSpatialModel(iem_fermi_extra, normalize=False),
            name="iem_extrapolated",
        )

        # ROI
        roi_time = time()
        ROI_pos = SkyCoord(lon, lat, frame="galactic", unit="deg")
        width = 2 * (radius + self.psf_margin)

        # Counts
        counts = Map.create(
            skydir=ROI_pos,
            width=width,
            proj="CAR",
            frame="galactic",
            binsz=1 / 8.0,
            axes=[self.energy_axis],
            dtype=float,
        )
        counts.fill_by_coord({
            "skycoord": self.events.radec,
            "energy": self.events.energy
        })

        axis = MapAxis.from_nodes(counts.geom.axes[0].center,
                                  name="energy_true",
                                  unit="GeV",
                                  interp="log")
        wcs = counts.geom.wcs
        geom = WcsGeom(wcs=wcs, npix=counts.geom.npix, axes=[axis])
        coords = geom.get_coord()
        # expo
        data = exposure_hpx.interp_by_coord(coords)
        exposure = WcsNDMap(geom, data, unit=exposure_hpx.unit, dtype=float)

        # Energy Dispersion
        edisp = EDispKernelMap.from_diagonal_response(
            energy_axis_true=axis, energy_axis=self.energy_axis)

        # fit mask
        if coords["lon"].min() < 90 * u.deg and coords["lon"].max(
        ) > 270 * u.deg:
            coords["lon"][coords["lon"].value > 180] -= 360 * u.deg
        mask = (
            (coords["lon"] >= coords["lon"].min() + self.psf_margin * u.deg)
            & (coords["lon"] <= coords["lon"].max() - self.psf_margin * u.deg)
            & (coords["lat"] >= coords["lat"].min() + self.psf_margin * u.deg)
            & (coords["lat"] <= coords["lat"].max() - self.psf_margin * u.deg))
        mask_fermi = WcsNDMap(counts.geom, mask)
        mask_safe_fermi = WcsNDMap(counts.geom, np.ones(mask.shape,
                                                        dtype=bool))

        log.info(f"ROI {kr}: pre-computing diffuse")

        # IEM
        eval_iem = MapEvaluator(
            model=model_iem,
            exposure=exposure,
            psf=psf_map.get_psf_kernel(geom),
            edisp=edisp.get_edisp_kernel(),
        )
        bkg_iem = eval_iem.compute_npred()

        # ISO
        eval_iso = MapEvaluator(model=self.model_iso,
                                exposure=exposure,
                                edisp=edisp.get_edisp_kernel())
        bkg_iso = eval_iso.compute_npred()

        # merge iem and iso, only one local normalization is fitted
        dataset_name = "3FHL_ROI_num" + str(kr)
        background_total = bkg_iem + bkg_iso

        # Dataset
        dataset = MapDataset(
            counts=counts,
            exposure=exposure,
            background=background_total,
            psf=psf_map,
            edisp=edisp,
            mask_fit=mask_fermi,
            mask_safe=mask_safe_fermi,
            name=dataset_name,
        )

        background_model = FoVBackgroundModel(dataset_name=dataset_name)
        background_model.parameters["norm"].min = 0.0

        # Sources model
        in_roi = self.FHL3.positions.galactic.contained_by(wcs)
        FHL3_roi = []
        for ks in range(len(self.FHL3.table)):
            if in_roi[ks] == True:
                model = self.FHL3[ks].sky_model()
                model.spatial_model.parameters.freeze_all()  # freeze spatial
                model.spectral_model.parameters["amplitude"].min = 0.0
                if isinstance(model.spectral_model, PowerLawSpectralModel):
                    model.spectral_model.parameters["index"].min = 0.1
                    model.spectral_model.parameters["index"].max = 10.0
                else:
                    model.spectral_model.parameters["alpha"].min = 0.1
                    model.spectral_model.parameters["alpha"].max = 10.0

                FHL3_roi.append(model)
        model_total = Models(FHL3_roi + [background_model])
        dataset.models = model_total

        cat_stat = dataset.stat_sum()
        datasets = Datasets([dataset])

        log.info(f"ROI {kr}: running fit")
        fit = Fit(**self.fit_opts)
        results = fit.run(datasets=datasets)
        print("ROI_num", str(kr), "\n", results)
        fit_stat = datasets.stat_sum()

        if results.message != "Optimization failed.":
            filedata = Path(self.resdir) / f"3FHL_ROI_num{kr}_datasets.yaml"
            filemodel = Path(self.resdir) / f"3FHL_ROI_num{kr}_models.yaml"
            datasets.write(filedata, filemodel, overwrite=True)
            np.savez(
                self.resdir / f"3FHL_ROI_num{kr}_fit_infos.npz",
                message=results.message,
                stat=[cat_stat, fit_stat],
            )

            exec_time = time() - roi_time
            print("ROI", kr, " time (s): ", exec_time)

            log.info(f"ROI {kr}: running flux points")
            for model in FHL3_roi:
                if (self.FHL3[model.name].data["ROI_num"] == kr
                        and self.FHL3[model.name].data["Signif_Avg"] >=
                        self.sig_cut):
                    print(model.name)
                    flux_points = FluxPointsEstimator(
                        energy_edges=self.El_flux,
                        source=model.name,
                        n_sigma_ul=2,
                        selection_optional=["ul"],
                    ).run(datasets=datasets)
                    flux_points.meta["sqrt_ts_threshold_ul"] = 1

                    filename = self.resdir / f"{model.name}_flux_points.fits"
                    flux_points.write(filename, overwrite=True)

            exec_time = time() - roi_time - exec_time
            print("ROI", kr, " Flux points time (s): ", exec_time)