Exemple #1
0
def test_lightcurve_temporal_model_integral():
    time = np.arange(0, 10, 0.06) * u.hour
    table = Table()
    table["TIME"] = time
    table["NORM"] = np.ones(len(time))
    table.meta = dict(MJDREFI=55197.0, MJDREFF=0, TIMEUNIT="hour")
    temporal_model = LightCurveTemplateTemporalModel(table)

    start = [1, 3, 5] * u.hour
    stop = [2, 3.5, 6] * u.hour
    gti = GTI.create(start, stop, reference_time=Time("2010-01-01T00:00:00"))

    val = temporal_model.integral(gti.time_start, gti.time_stop)
    assert len(val) == 3
    assert_allclose(np.sum(val), 1.0, rtol=1e-5)
Exemple #2
0
def models():
    spatial_model = GaussianSpatialModel(lon_0="0 deg",
                                         lat_0="0 deg",
                                         sigma="0.2 deg",
                                         frame="galactic")

    spectral_model = PowerLawSpectralModel(amplitude="1e-11 cm-2 s-1 TeV-1")

    t_max = 1000 * u.s

    time = np.arange(t_max.value) * u.s
    tau = u.Quantity("2e2 s")
    norm = np.exp(-time / tau)

    table = Table()
    table["TIME"] = time
    table["NORM"] = norm / norm.max()
    t_ref = Time("2000-01-01")
    table.meta = dict(MJDREFI=t_ref.mjd, MJDREFF=0, TIMEUNIT="s")
    temporal_model = LightCurveTemplateTemporalModel(table)

    model = SkyModel(
        spatial_model=spatial_model,
        spectral_model=spectral_model,
        temporal_model=temporal_model,
        name="test-source",
    )

    bkg_model = FoVBackgroundModel(dataset_name="test")
    return [model, bkg_model]
Exemple #3
0
def dataset():
    position = SkyCoord(0.0, 0.0, frame="galactic", unit="deg")
    energy_axis = MapAxis.from_bounds(1,
                                      10,
                                      nbin=3,
                                      unit="TeV",
                                      name="energy",
                                      interp="log")

    spatial_model = GaussianSpatialModel(lon_0="0 deg",
                                         lat_0="0 deg",
                                         sigma="0.2 deg",
                                         frame="galactic")

    spectral_model = PowerLawSpectralModel(amplitude="1e-11 cm-2 s-1 TeV-1")

    t_min = 0 * u.s
    t_max = 1000 * u.s

    time = np.arange(t_max.value) * u.s
    tau = u.Quantity("2e2 s")
    norm = np.exp(-time / tau)

    table = Table()
    table["TIME"] = time
    table["NORM"] = norm / norm.max()
    t_ref = Time("2000-01-01")
    table.meta = dict(MJDREFI=t_ref.mjd, MJDREFF=0, TIMEUNIT="s")
    temporal_model = LightCurveTemplateTemporalModel(table)

    skymodel = SkyModel(
        spatial_model=spatial_model,
        spectral_model=spectral_model,
        temporal_model=temporal_model,
    )

    geom = WcsGeom.create(skydir=position,
                          binsz=1,
                          width="5 deg",
                          frame="galactic",
                          axes=[energy_axis])

    gti = GTI.create(start=t_min, stop=t_max, reference_time=t_ref)

    geom_true = geom.copy()
    geom_true.axes[0].name = "energy_true"

    dataset = get_map_dataset(sky_model=skymodel,
                              geom=geom,
                              geom_etrue=geom_true,
                              edisp="edispmap")
    dataset.gti = gti

    return dataset
Exemple #4
0
def test_time_sampling(tmp_path):
    time = np.arange(0, 10, 0.06) * u.hour

    table = Table()
    table["TIME"] = time
    table["NORM"] = rate(time)
    table.meta = dict(MJDREFI=55197.0, MJDREFF=0, TIMEUNIT="hour")
    temporal_model = LightCurveTemplateTemporalModel(table)

    filename = str(make_path(tmp_path / "tmp.fits"))
    temporal_model.write(path=filename)
    model_read = temporal_model.read(filename)
    assert temporal_model.filename == filename
    assert model_read.filename == filename
    assert_allclose(model_read.table["TIME"].quantity.value, time.value)

    t_ref = "2010-01-01T00:00:00"
    t_min = "2010-01-01T00:00:00"
    t_max = "2010-01-01T08:00:00"

    sampler = temporal_model.sample_time(n_events=2,
                                         t_min=t_min,
                                         t_max=t_max,
                                         random_state=0,
                                         t_delta="10 min")

    sampler = u.Quantity((sampler - Time(t_ref)).sec, "s")
    assert len(sampler) == 2
    assert_allclose(sampler.value, [12661.65802564, 7826.92991], rtol=1e-5)

    table = Table()
    table["TIME"] = time
    table["NORM"] = np.ones(len(time))
    table.meta = dict(MJDREFI=55197.0, MJDREFF=0, TIMEUNIT="hour")
    temporal_model_uniform = LightCurveTemplateTemporalModel(table)

    sampler_uniform = temporal_model_uniform.sample_time(n_events=2,
                                                         t_min=t_min,
                                                         t_max=t_max,
                                                         random_state=0,
                                                         t_delta="10 min")
    sampler_uniform = u.Quantity((sampler_uniform - Time(t_ref)).sec, "s")

    assert len(sampler_uniform) == 2
    assert_allclose(sampler_uniform.value, [1261.65802564, 6026.9299098],
                    rtol=1e-5)
Exemple #5
0
def test_time_sampling():
    time = np.arange(0, 10, 0.06) * u.hour

    table = Table()
    table["TIME"] = time
    table["NORM"] = rate(time)
    temporal_model = LightCurveTemplateTemporalModel(table)

    t_ref = "2010-01-01T00:00:00"
    t_min = "2010-01-01T00:00:00"
    t_max = "2010-01-01T08:00:00"

    sampler = temporal_model.sample_time(n_events=2,
                                         t_min=t_min,
                                         t_max=t_max,
                                         random_state=0,
                                         t_delta="10 min")

    sampler = u.Quantity((sampler - Time(t_ref)).sec, "s")

    table = Table()
    table["TIME"] = time
    table["NORM"] = np.ones(len(time))
    temporal_model_uniform = LightCurveTemplateTemporalModel(table)

    sampler_uniform = temporal_model_uniform.sample_time(n_events=2,
                                                         t_min=t_min,
                                                         t_max=t_max,
                                                         random_state=0,
                                                         t_delta="10 min")

    sampler_uniform = u.Quantity((sampler_uniform - Time(t_ref)).sec, "s")

    assert len(sampler) == 2
    assert len(sampler_uniform) == 2
    assert_allclose(sampler.value, [12661.65802564, 26.9299098], rtol=1e-5)
    assert_allclose(sampler_uniform.value, [1261.65802564, 6026.9299098],
                    rtol=1e-5)
Exemple #6
0
def light_curve():
    path = "$GAMMAPY_DATA/tests/models/light_curve/lightcrv_PKSB1222+216.fits"
    return LightCurveTemplateTemporalModel.read(path)
This model parametrises a lightCurve time model.


"""

from astropy.time import Time
from gammapy.modeling.models import (
    LightCurveTemplateTemporalModel,
    Models,
    PowerLawSpectralModel,
    SkyModel,
)

time_range = [Time("59100", format="mjd"), Time("59365", format="mjd")]
path = "$GAMMAPY_DATA/tests/models/light_curve/lightcrv_PKSB1222+216.fits"
light_curve_model = LightCurveTemplateTemporalModel.read(path)
light_curve_model.plot(time_range)

# %%
# YAML representation
# -------------------
# Here is an example YAML file using the model:

model = SkyModel(
    spectral_model=PowerLawSpectralModel(),
    temporal_model=light_curve_model,
    name="light_curve_model",
)
models = Models([model])

print(models.to_yaml())
Exemple #8
0
def test_time_sampling(tmp_path):
    time = np.arange(0, 10, 0.06) * u.hour

    table = Table()
    table["TIME"] = time
    table["NORM"] = rate(time)
    table.meta = dict(MJDREFI=55197.0, MJDREFF=0, TIMEUNIT="hour")
    temporal_model = LightCurveTemplateTemporalModel(table)

    filename = str(make_path(tmp_path / "tmp.fits"))
    temporal_model.write(path=filename)
    model_read = temporal_model.read(filename)
    assert temporal_model.filename == filename
    assert model_read.filename == filename
    assert_allclose(model_read.table["TIME"].quantity.value, time.value)

    t_ref = "2010-01-01T00:00:00"
    t_min = "2010-01-01T00:00:00"
    t_max = "2010-01-01T08:00:00"

    sampler = temporal_model.sample_time(n_events=2,
                                         t_min=t_min,
                                         t_max=t_max,
                                         random_state=0,
                                         t_delta="10 min")
    sampler = u.Quantity((sampler - Time(t_ref)).sec, "s")

    assert len(sampler) == 2
    assert_allclose(sampler.value, [12661.65802564, 7826.92991], rtol=1e-5)

    table = Table()
    table["TIME"] = time
    table["NORM"] = np.ones(len(time))
    table.meta = dict(MJDREFI=55197.0, MJDREFF=0, TIMEUNIT="hour")
    temporal_model_uniform = LightCurveTemplateTemporalModel(table)

    sampler_uniform = temporal_model_uniform.sample_time(n_events=2,
                                                         t_min=t_min,
                                                         t_max=t_max,
                                                         random_state=0,
                                                         t_delta="10 min")
    sampler_uniform = u.Quantity((sampler_uniform - Time(t_ref)).sec, "s")

    assert len(sampler_uniform) == 2
    assert_allclose(sampler_uniform.value, [1261.65802564, 6026.9299098],
                    rtol=1e-5)

    temporal_model = ConstantTemporalModel()
    sampler_costant = temporal_model.sample_time(n_events=2,
                                                 t_min=t_min,
                                                 t_max=t_max,
                                                 random_state=0)
    sampler_costant = u.Quantity((sampler_costant - Time(t_ref)).sec, "s")

    assert len(sampler_costant) == 2
    assert_allclose(sampler_costant.value, [4330.10377559, 3334.04566256],
                    rtol=1e-5)

    temporal_model = ExpDecayTemporalModel(t_ref=Time(t_ref).mjd * u.d)
    sampler_expo = temporal_model.sample_time(n_events=2,
                                              t_min=t_min,
                                              t_max=t_max,
                                              random_state=0)
    sampler_expo = u.Quantity((sampler_expo.mjd - Time(t_ref).mjd), "d")

    assert sampler_expo.unit == u.d
    assert_allclose(sampler_expo.to("s").value, [11824.1055276, 7273.04658336],
                    rtol=1e-8)