# specify generator generator_sequence_filename = args.model_dir + "/generator.json" if os.path.isfile(generator_sequence_filename): print "loading", generator_sequence_filename with open(generator_sequence_filename, "r") as f: try: generator_params = json.load(f) except: raise Exception( "could not load {}".format(generator_sequence_filename)) else: config = GeneratorParams() config.ndim_input = 256 config.ndim_output = 2 config.num_mixture = args.num_mixture config.distribution_output = "universal" config.use_weightnorm = False config.weight_std = 0.01 config.weight_initializer = "Normal" config.nonlinearity = "relu" config.optimizer = "adam" config.learning_rate = 0.0001 config.momentum = 0.5 config.gradient_clipping = 1 config.weight_decay = 0 # generator generator = Sequential() generator.add(
# specify generator generator_sequence_filename = args.model_dir + "/generator.json" if os.path.isfile(generator_sequence_filename): print "loading", generator_sequence_filename with open(generator_sequence_filename, "r") as f: try: params = json.load(f) except: raise Exception( "could not load {}".format(generator_sequence_filename)) else: config = GeneratorParams() config.ndim_input = ndim_latent_code config.ndim_output = image_width * image_height config.distribution_output = "tanh" config.use_weightnorm = False config.weight_init_std = 0.1 config.weight_initializer = "Normal" config.nonlinearity = "relu" config.optimizer = "adam" config.learning_rate = 0.0001 config.momentum = 0.5 config.gradient_clipping = 10 config.weight_decay = 0 # generator generator = Sequential(weight_initializer=config.weight_initializer, weight_init_std=config.weight_init_std) generator.add(