Exemple #1
0
 def __init__(self, image, piece_size, population_size, generations, elite_size=2):
     self._image = image
     self._piece_size = piece_size
     self._generations = generations
     self._elite_size = elite_size
     pieces, rows, columns = image_helpers.flatten_image(image, piece_size, indexed=True)
     self._population = [Individual(pieces, rows, columns) for _ in range(population_size)]
     self._pieces = pieces
Exemple #2
0
    def child(self):
        pieces = [None] * self._pieces_length

        for piece, (row, column) in self._kernel.items():
            index = (row - self._min_row) * self._child_columns + (
                column - self._min_column)
            pieces[index] = self._parents[0].piece_by_id(piece)

        return Individual(pieces,
                          self._child_rows,
                          self._child_columns,
                          shuffle=False)
Exemple #3
0
    def __init__(self,
                 image,
                 piece_size,
                 population_size,
                 generations,
                 elite_size=2,
                 position_file="image_position.txt"):
        # 初始化种群: 代数,人口 TODO
        self._image = image
        self._piece_size = piece_size
        self._generations = generations
        self._elite_size = elite_size
        pieces, rows, columns = image_helpers.flatten_image(
            image, piece_size, indexed=True, position_file=position_file)
        # 循环population_size次,每次都将Individual方法调用返回的对象加入到list中

        self._population = [
            Individual(pieces, rows, columns) for _ in range(population_size)
        ]
        self._pieces = pieces
Exemple #4
0
    def start_evolution(self, verbose):
        print("=== Pieces:      {}\n".format(len(self._pieces)))

        if verbose:
            plot = Plot(self._image)

        ImageAnalysis.analyze_image(self._pieces)

        fittest = None
        best_fitness_score = float("-inf")
        termination_counter = 0

        for generation in range(self._generations):
            print_progress(generation,
                           self._generations - 1,
                           prefix="=== Solving puzzle: ")

            new_population = []

            # Elitism
            # 取适应度最高的两个图片
            elite = self._get_elite_individuals(elites=self._elite_size)
            new_population.extend(elite)

            # 从种群中随机选择popultation - elite_size个父母
            selected_parents = roulette_selection(self._population,
                                                  elites=self._elite_size)

            # 通过父母生成子代,加入到new_population中
            for first_parent, second_parent in selected_parents:
                # 交叉互换,生成子代
                crossover = Crossover(first_parent, second_parent)
                crossover.run()
                child = crossover.child()
                # child.mutate()
                new_population.append(child)

            # 从上一代中选出适应度最高的一个
            fittest = self._best_individual()

            fittest.mutate()

            # min_fitness = 0
            # for index in range(len(new_population)):
            #     if new_population[index].fitness < new_population[min_fitness].fitness:
            #         min_fitness = index
            # fittest.clear_fitness()
            # if fittest.fitness > new_population[min_fitness].fitness:
            #     new_population[min_fitness] = fittest

            print("old_fittest : ", fittest.fitness, end="")

            # image = fittest.to_image()
            # rightImage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
            # cv2.imwrite("temp_image_" + str(generation) + ".jpg", rightImage)
            best_adjoin = fittest.best_adjoin(self._piece_size)
            rightImage = cv2.cvtColor(best_adjoin, cv2.COLOR_RGB2BGR)
            cv2.imwrite("temp_image_best_adjoin_" + str(generation) + ".jpg",
                        rightImage)
            # penalisze = fittest.penalize()
            # print("  new_fittest : ", fittest.fitness)
            # rightImage = cv2.cvtColor(penalize, cv2.COLOR_RGB2BGR)
            # cv2.imwrite("temp_image_penalize_" + str(generation) + ".jpg", rightImage)

            # 如果上一代最佳比历史最佳好,则termination_counter += 1,否则替换
            if fittest.fitness < best_fitness_score:
                termination_counter += 1
            else:
                best_fitness_score = fittest.fitness
                termination_counter = 0

            if termination_counter % 4 == 2:
                predicate = Individual(fittest.pieces,
                                       fittest.rows,
                                       fittest.columns,
                                       shuffle=False)
                predicate.penalize_image = fittest.penalize_image
                # 处理局部最优
                predicate.manually_select()
                # predicate.shuffle_assembling()
                print("predicate_fitness : %s " % str(predicate.fitness))
                image = predicate.to_image()
                rightImage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
                cv2.imwrite("predicate_image_" + str(generation) + ".jpg",
                            rightImage)
                for index in range(len(new_population)):
                    if new_population[index].fitness < predicate.fitness:
                        new_population[index] = predicate
                        break

            # 如果连续十代都没有更优子代,则退出
            if termination_counter == self.TERMINATION_THRESHOLD:
                print("\n\n=== GA terminated")
                print("=== There was no improvement for {} generations".format(
                    self.TERMINATION_THRESHOLD))
                return fittest

            self._population = new_population

            if verbose:
                plot.show_fittest(
                    fittest.to_image(),
                    "Generation: {} / {}".format(generation + 1,
                                                 self._generations))

        return fittest