def __init__( self, name, env_spec, conv_filters, conv_filter_sizes, conv_strides, conv_pads, hidden_sizes=[], hidden_nonlinearity=NL.rectify, output_nonlinearity=NL.softmax, prob_network=None, ): """ :param env_spec: A spec for the mdp. :param hidden_sizes: list of sizes for the fully connected hidden layers :param hidden_nonlinearity: nonlinearity used for each hidden layer :param prob_network: manually specified network for this policy, other network params are ignored :return: """ Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, gym.spaces.Discrete) self._env_spec = env_spec if prob_network is None: prob_network = ConvNetwork( input_shape=env_spec.observation_space.shape, output_dim=env_spec.action_space.n, conv_filters=conv_filters, conv_filter_sizes=conv_filter_sizes, conv_strides=conv_strides, conv_pads=conv_pads, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=NL.softmax, name="prob_network", ) self._l_prob = prob_network.output_layer self._l_obs = prob_network.input_layer self._f_prob = ext.compile_function( [prob_network.input_layer.input_var], L.get_output(prob_network.output_layer)) self._dist = Categorical(env_spec.action_space.n) super(CategoricalConvPolicy, self).__init__(env_spec) LasagnePowered.__init__(self, [prob_network.output_layer])
def __init__(self, env_spec, hidden_sizes=(32, 32), hidden_nonlinearity=NL.rectify, hidden_w_init=LI.HeUniform(), hidden_b_init=LI.Constant(0.), output_nonlinearity=NL.tanh, output_w_init=LI.Uniform(-3e-3, 3e-3), output_b_init=LI.Uniform(-3e-3, 3e-3), bn=False): Serializable.quick_init(self, locals()) l_obs = L.InputLayer(shape=(None, env_spec.observation_space.flat_dim)) l_hidden = l_obs if bn: l_hidden = batch_norm(l_hidden) for idx, size in enumerate(hidden_sizes): l_hidden = L.DenseLayer( l_hidden, num_units=size, W=hidden_w_init, b=hidden_b_init, nonlinearity=hidden_nonlinearity, name="h%d" % idx) if bn: l_hidden = batch_norm(l_hidden) l_output = L.DenseLayer( l_hidden, num_units=env_spec.action_space.flat_dim, W=output_w_init, b=output_b_init, nonlinearity=output_nonlinearity, name="output") # Note the deterministic=True argument. It makes sure that when getting # actions from single observations, we do not update params in the # batch normalization layers action_var = L.get_output(l_output, deterministic=True) self._output_layer = l_output self._f_actions = ext.compile_function([l_obs.input_var], action_var) super(DeterministicMLPPolicy, self).__init__(env_spec) LasagnePowered.__init__(self, [l_output])
def __init__( self, env_spec, hidden_sizes=(32, 32), hidden_nonlinearity=NL.tanh, num_seq_inputs=1, prob_network=None, ): """ :param env_spec: A spec for the mdp. :param hidden_sizes: sizes list for the fully connected hidden layers :param hidden_nonlinearity: nonlinearity used for each hidden layer :param prob_network: manually specified network for this policy, other network params are ignored :return: """ Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Discrete) if prob_network is None: prob_network = MLP( input_shape=(env_spec.observation_space.flat_dim * num_seq_inputs, ), output_dim=env_spec.action_space.n, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=NL.softmax, ) self._l_prob = prob_network.output_layer self._l_obs = prob_network.input_layer self._f_prob = ext.compile_function( [prob_network.input_layer.input_var], L.get_output(prob_network.output_layer)) self._dist = Categorical(env_spec.action_space.n) super(CategoricalMLPPolicy, self).__init__(env_spec) LasagnePowered.__init__(self, [prob_network.output_layer])
def set_param_values(self, flattened_params, **tags): return LasagnePowered.set_param_values(self, flattened_params, **tags)
def get_param_values(self, **tags): return LasagnePowered.get_param_values(self, **tags)
def __init__( self, input_shape, output_dim, mean_network=None, hidden_sizes=(32, 32), hidden_nonlinearity=NL.rectify, optimizer=None, use_trust_region=True, step_size=0.01, learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), std_nonlinearity=None, normalize_inputs=True, normalize_outputs=True, name=None, batchsize=None, subsample_factor=1., ): """ :param input_shape: Shape of the input data. :param output_dim: Dimension of output. :param hidden_sizes: Number of hidden units of each layer of the mean network. :param hidden_nonlinearity: Non-linearity used for each layer of the mean network. :param optimizer: Optimizer for minimizing the negative log-likelihood. :param use_trust_region: Whether to use trust region constraint. :param step_size: KL divergence constraint for each iteration :param learn_std: Whether to learn the standard deviations. Only effective if adaptive_std is False. If adaptive_std is True, this parameter is ignored, and the weights for the std network are always learned. :param adaptive_std: Whether to make the std a function of the states. :param std_share_network: Whether to use the same network as the mean. :param std_hidden_sizes: Number of hidden units of each layer of the std network. Only used if `std_share_network` is False. It defaults to the same architecture as the mean. :param std_nonlinearity: Non-linearity used for each layer of the std network. Only used if `std_share_network` is False. It defaults to the same non-linearity as the mean. """ Serializable.quick_init(self, locals()) self._batchsize = batchsize self._subsample_factor = subsample_factor if optimizer is None: if use_trust_region: optimizer = PenaltyLbfgsOptimizer() else: optimizer = LbfgsOptimizer() self._optimizer = optimizer if mean_network is None: mean_network = MLP( input_shape=input_shape, output_dim=output_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=None, ) l_mean = mean_network.output_layer if adaptive_std: l_log_std = MLP( input_shape=input_shape, input_var=mean_network.input_layer.input_var, output_dim=output_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_nonlinearity, output_nonlinearity=None, ).output_layer else: l_log_std = ParamLayer( mean_network.input_layer, num_units=output_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) LasagnePowered.__init__(self, [l_mean, l_log_std]) xs_var = mean_network.input_layer.input_var ys_var = TT.matrix("ys") old_means_var = TT.matrix("old_means") old_log_stds_var = TT.matrix("old_log_stds") x_mean_var = theano.shared(np.zeros((1, ) + input_shape, dtype=theano.config.floatX), name="x_mean", broadcastable=(True, ) + (False, ) * len(input_shape)) x_std_var = theano.shared(np.ones((1, ) + input_shape, dtype=theano.config.floatX), name="x_std", broadcastable=(True, ) + (False, ) * len(input_shape)) y_mean_var = theano.shared(np.zeros((1, output_dim), dtype=theano.config.floatX), name="y_mean", broadcastable=(True, False)) y_std_var = theano.shared(np.ones((1, output_dim), dtype=theano.config.floatX), name="y_std", broadcastable=(True, False)) normalized_xs_var = (xs_var - x_mean_var) / x_std_var normalized_ys_var = (ys_var - y_mean_var) / y_std_var normalized_means_var = L.get_output( l_mean, {mean_network.input_layer: normalized_xs_var}) normalized_log_stds_var = L.get_output( l_log_std, {mean_network.input_layer: normalized_xs_var}) means_var = normalized_means_var * y_std_var + y_mean_var log_stds_var = normalized_log_stds_var + TT.log(y_std_var) normalized_old_means_var = (old_means_var - y_mean_var) / y_std_var normalized_old_log_stds_var = old_log_stds_var - TT.log(y_std_var) dist = self._dist = DiagonalGaussian(output_dim) normalized_dist_info_vars = dict(mean=normalized_means_var, log_std=normalized_log_stds_var) mean_kl = TT.mean( dist.kl_sym( dict(mean=normalized_old_means_var, log_std=normalized_old_log_stds_var), normalized_dist_info_vars, )) loss = - \ TT.mean(dist.log_likelihood_sym( normalized_ys_var, normalized_dist_info_vars)) self._f_predict = compile_function([xs_var], means_var) self._f_pdists = compile_function([xs_var], [means_var, log_stds_var]) self._l_mean = l_mean self._l_log_std = l_log_std optimizer_args = dict( loss=loss, target=self, network_outputs=[normalized_means_var, normalized_log_stds_var], ) if use_trust_region: optimizer_args["leq_constraint"] = (mean_kl, step_size) optimizer_args["inputs"] = [ xs_var, ys_var, old_means_var, old_log_stds_var ] else: optimizer_args["inputs"] = [xs_var, ys_var] self._optimizer.update_opt(**optimizer_args) self._use_trust_region = use_trust_region self._name = name self._normalize_inputs = normalize_inputs self._normalize_outputs = normalize_outputs self._mean_network = mean_network self._x_mean_var = x_mean_var self._x_std_var = x_std_var self._y_mean_var = y_mean_var self._y_std_var = y_std_var
def __init__(self, env_spec, hidden_dim=32, feature_network=None, state_include_action=True, hidden_nonlinearity=NL.tanh): """ :param env_spec: A spec for the env. :param hidden_dim: dimension of hidden layer :param hidden_nonlinearity: nonlinearity used for each hidden layer :return: """ assert isinstance(env_spec.action_space, Discrete) Serializable.quick_init(self, locals()) super(CategoricalGRUPolicy, self).__init__(env_spec) obs_dim = env_spec.observation_space.flat_dim action_flat_dim = env_spec.action_space.flat_dim if state_include_action: input_dim = obs_dim + action_flat_dim else: input_dim = obs_dim l_input = L.InputLayer(shape=(None, None, input_dim), name="input") if feature_network is None: feature_dim = input_dim l_flat_feature = None l_feature = l_input else: feature_dim = feature_network.output_layer.output_shape[-1] l_flat_feature = feature_network.output_layer l_feature = OpLayer( l_flat_feature, extras=[l_input], name="reshape_feature", op=lambda flat_feature, input: TT.reshape( flat_feature, [input.shape[0], input.shape[1], feature_dim]), shape_op=lambda _, input_shape: (input_shape[0], input_shape[1], feature_dim)) prob_network = GRUNetwork( input_shape=(feature_dim, ), input_layer=l_feature, output_dim=env_spec.action_space.n, hidden_dim=hidden_dim, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=TT.nnet.softmax, name="prob_network") self.prob_network = prob_network self.feature_network = feature_network self.l_input = l_input self.state_include_action = state_include_action flat_input_var = TT.matrix("flat_input") if feature_network is None: feature_var = flat_input_var else: feature_var = L.get_output( l_flat_feature, {feature_network.input_layer: flat_input_var}) self.f_step_prob = ext.compile_function( [flat_input_var, prob_network.step_prev_hidden_layer.input_var], L.get_output([ prob_network.step_output_layer, prob_network.step_hidden_layer ], {prob_network.step_input_layer: feature_var})) self.input_dim = input_dim self.action_flat_dim = action_flat_dim self.hidden_dim = hidden_dim self.prev_action = None self.prev_hidden = None self.dist = RecurrentCategorical(env_spec.action_space.n) out_layers = [prob_network.output_layer] if feature_network is not None: out_layers.append(feature_network.output_layer) LasagnePowered.__init__(self, out_layers)
def __init__( self, env_spec, hidden_sizes=(32, ), state_include_action=True, hidden_nonlinearity=NL.tanh, learn_std=True, init_std=1.0, output_nonlinearity=None, ): """ :param env_spec: A spec for the env. :param hidden_sizes: sizes list for the fully connected hidden layers :param hidden_nonlinearity: nonlinearity used for each hidden layer :return: """ Serializable.quick_init(self, locals()) super(GaussianGRUPolicy, self).__init__(env_spec) assert len(hidden_sizes) == 1 if state_include_action: obs_dim = env_spec.observation_space.flat_dim +\ env_spec.action_space.flat_dim else: obs_dim = env_spec.observation_space.flat_dim action_flat_dim = env_spec.action_space.flat_dim mean_network = GRUNetwork( input_shape=(obs_dim, ), output_dim=action_flat_dim, hidden_dim=hidden_sizes[0], hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, ) l_mean = mean_network.output_layer obs_var = mean_network.input_var l_log_std = ParamLayer( mean_network.input_layer, num_units=action_flat_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) l_step_log_std = ParamLayer( mean_network.step_input_layer, num_units=action_flat_dim, param=l_log_std.param, name="step_output_log_std", trainable=learn_std, ) self._mean_network = mean_network self._l_log_std = l_log_std self._state_include_action = state_include_action self._f_step_mean_std = ext.compile_function( [ mean_network.step_input_layer.input_var, mean_network.step_prev_hidden_layer.input_var ], L.get_output([ mean_network.step_output_layer, l_step_log_std, mean_network.step_hidden_layer ])) self._prev_action = None self._prev_hidden = None self._hidden_sizes = hidden_sizes self._dist = RecurrentDiagonalGaussian(action_flat_dim) self.reset() LasagnePowered.__init__(self, [mean_network.output_layer, l_log_std])
def __init__( self, input_shape, output_dim, prob_network=None, hidden_sizes=(32, 32), hidden_nonlinearity=NL.rectify, optimizer=None, use_trust_region=True, step_size=0.01, normalize_inputs=True, name=None, ): """ :param input_shape: Shape of the input data. :param output_dim: Dimension of output. :param hidden_sizes: Number of hidden units of each layer of the mean network. :param hidden_nonlinearity: Non-linearity used for each layer of the mean network. :param optimizer: Optimizer for minimizing the negative log-likelihood. :param use_trust_region: Whether to use trust region constraint. :param step_size: KL divergence constraint for each iteration """ Serializable.quick_init(self, locals()) if optimizer is None: if use_trust_region: optimizer = PenaltyLbfgsOptimizer() else: optimizer = LbfgsOptimizer() self.output_dim = output_dim self._optimizer = optimizer if prob_network is None: prob_network = MLP( input_shape=input_shape, output_dim=output_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=NL.softmax, ) l_prob = prob_network.output_layer LasagnePowered.__init__(self, [l_prob]) xs_var = prob_network.input_layer.input_var ys_var = TT.imatrix("ys") old_prob_var = TT.matrix("old_prob") x_mean_var = theano.shared( np.zeros((1, ) + input_shape), name="x_mean", broadcastable=(True, ) + (False, ) * len(input_shape)) x_std_var = theano.shared( np.ones((1, ) + input_shape), name="x_std", broadcastable=(True, ) + (False, ) * len(input_shape)) normalized_xs_var = (xs_var - x_mean_var) / x_std_var prob_var = L.get_output(l_prob, {prob_network.input_layer: normalized_xs_var}) old_info_vars = dict(prob=old_prob_var) info_vars = dict(prob=prob_var) dist = self._dist = Categorical(output_dim) mean_kl = TT.mean(dist.kl_sym(old_info_vars, info_vars)) loss = -TT.mean(dist.log_likelihood_sym(ys_var, info_vars)) predicted = special.to_onehot_sym( TT.argmax(prob_var, axis=1), output_dim) self._f_predict = ext.compile_function([xs_var], predicted) self._f_prob = ext.compile_function([xs_var], prob_var) self._prob_network = prob_network self._l_prob = l_prob optimizer_args = dict( loss=loss, target=self, network_outputs=[prob_var], ) if use_trust_region: optimizer_args["leq_constraint"] = (mean_kl, step_size) optimizer_args["inputs"] = [xs_var, ys_var, old_prob_var] else: optimizer_args["inputs"] = [xs_var, ys_var] self._optimizer.update_opt(**optimizer_args) self._use_trust_region = use_trust_region self._name = name self._normalize_inputs = normalize_inputs self._x_mean_var = x_mean_var self._x_std_var = x_std_var
def __init__( self, env_spec, hidden_sizes=(32, 32), learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), min_std=1e-6, std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, mean_network=None, std_network=None, dist_cls=DiagonalGaussian, ): """ :param env_spec: :param hidden_sizes: sizes list for the fully-connected hidden layers :param learn_std: Is std trainable :param init_std: Initial std :param adaptive_std: :param std_share_network: :param std_hidden_sizes: sizes list for the fully-connected layers for std :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues :param std_hidden_nonlinearity: :param hidden_nonlinearity: nonlinearity used for each hidden layer :param output_nonlinearity: nonlinearity for the output layer :param mean_network: custom network for the output mean :param std_network: custom network for the output log std :return: """ Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Box) obs_dim = env_spec.observation_space.flat_dim action_flat_dim = env_spec.action_space.flat_dim # create network if mean_network is None: mean_network = MLP( input_shape=(obs_dim, ), output_dim=action_flat_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, ) self._mean_network = mean_network l_mean = mean_network.output_layer obs_var = mean_network.input_layer.input_var if std_network is not None: l_log_std = std_network.output_layer else: if adaptive_std: std_network = MLP( input_shape=(obs_dim, ), input_layer=mean_network.input_layer, output_dim=action_flat_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_hidden_nonlinearity, output_nonlinearity=None, ) l_log_std = std_network.output_layer else: l_log_std = ParamLayer( mean_network.input_layer, num_units=action_flat_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) self.min_std = min_std mean_var, log_std_var = L.get_output([l_mean, l_log_std]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(min_std)) self._mean_var, self._log_std_var = mean_var, log_std_var self._l_mean = l_mean self._l_log_std = l_log_std self._dist = dist_cls(action_flat_dim) LasagnePowered.__init__(self, [l_mean, l_log_std]) super(GaussianMLPPolicy, self).__init__(env_spec) self._f_dist = ext.compile_function( inputs=[obs_var], outputs=[mean_var, log_std_var], )
def __init__(self, env_spec, hidden_sizes=(32, 32), hidden_nonlinearity=NL.rectify, hidden_w_init=lasagne.init.HeUniform(), hidden_b_init=lasagne.init.Constant(0.), action_merge_layer=-2, output_nonlinearity=None, output_w_init=lasagne.init.Uniform(-3e-3, 3e-3), output_b_init=lasagne.init.Uniform(-3e-3, 3e-3), bn=False): Serializable.quick_init(self, locals()) l_obs = L.InputLayer(shape=(None, env_spec.observation_space.flat_dim), name="obs") l_action = L.InputLayer(shape=(None, env_spec.action_space.flat_dim), name="actions") n_layers = len(hidden_sizes) + 1 if n_layers > 1: action_merge_layer = \ (action_merge_layer % n_layers + n_layers) % n_layers else: action_merge_layer = 1 l_hidden = l_obs for idx, size in enumerate(hidden_sizes): if bn: l_hidden = batch_norm(l_hidden) if idx == action_merge_layer: l_hidden = L.ConcatLayer([l_hidden, l_action]) l_hidden = L.DenseLayer(l_hidden, num_units=size, W=hidden_w_init, b=hidden_b_init, nonlinearity=hidden_nonlinearity, name="h%d" % (idx + 1)) if action_merge_layer == n_layers: l_hidden = L.ConcatLayer([l_hidden, l_action]) l_output = L.DenseLayer(l_hidden, num_units=1, W=output_w_init, b=output_b_init, nonlinearity=output_nonlinearity, name="output") output_var = L.get_output(l_output, deterministic=True).flatten() self._f_qval = ext.compile_function( [l_obs.input_var, l_action.input_var], output_var) self._output_layer = l_output self._obs_layer = l_obs self._action_layer = l_action self._output_nonlinearity = output_nonlinearity LasagnePowered.__init__(self, [l_output])