#!/usr/bin/env python3 import tensorflow as tf from garage.misc import logger logger.set_tensorboard_dir("data/local/histogram_example") N = 400 for i in range(N): sess = tf.Session() sess.__enter__() k_val = i / float(N) logger.record_histogram_by_type('gamma', key='gamma', alpha=k_val) logger.record_histogram_by_type('normal', key='normal', mean=5 * k_val, stddev=1.0) logger.record_histogram_by_type('poisson', key='poisson', lam=k_val) logger.record_histogram_by_type('uniform', key='uniform', maxval=k_val * 10) logger.record_tabular("app", k_val) logger.record_histogram("gass", k_val) logger.dump_tensorboard(step=i)
e = GaussianMLPEmbedding(embed_spec, std_share_network=True) p = GaussianMLPMultitaskPolicy(env_spec=env_spec, task_space=task_space, embedding=e, std_share_network=True) my_task = task_space.new_tensor_variable(name="my_task", extra_dims=1) my_obs = obs_space.new_tensor_variable(name="my_obs", extra_dims=1) with tf.name_scope("build_opt"): dist_info = e.dist_info_sym(my_task, name="e_dist_info") p_dist_info = p.dist_info_sym(my_task, my_obs, name="p_dist_info") with tf.name_scope("test_fixture"): a = tf.exp(e.latent) b = tf.exp(e._latent_std_param) sess.run(tf.global_variables_initializer()) t = task_space.sample() o = obs_space.sample() to = np.concatenate([t, o], axis=0) p.get_action(to) z = latent_space.sample() p.get_action_from_latent(z, o) logger.dump_tensorboard() ipdb.set_trace() print("done!")