def test_logger(self): args = SimpleNamespace() args.args_data = "" logger.set_snapshot_dir("exp") logger.save_itr_params(1, {}) logger.log_parameters_lite("exp-log", args) logger.log_variant("exp-log", {}) logger.record_tabular_misc_stat("key", 1)
def run_experiment(argv): default_log_dir = config.LOG_DIR now = datetime.datetime.now(dateutil.tz.tzlocal()) # avoid name clashes when running distributed jobs rand_id = str(uuid.uuid4())[:5] timestamp = now.strftime('%Y_%m_%d_%H_%M_%S_%f_%Z') default_exp_name = 'experiment_%s_%s' % (timestamp, rand_id) parser = argparse.ArgumentParser() parser.add_argument( '--n_parallel', type=int, default=1, help=("Number of parallel workers to perform rollouts. " "0 => don't start any workers")) parser.add_argument( '--exp_name', type=str, default=default_exp_name, help='Name of the experiment.') parser.add_argument( '--log_dir', type=str, default=None, help='Path to save the log and iteration snapshot.') parser.add_argument( '--snapshot_mode', type=str, default='all', help='Mode to save the snapshot. Can be either "all" ' '(all iterations will be saved), "last" (only ' 'the last iteration will be saved), "gap" (every' '`snapshot_gap` iterations are saved), or "none" ' '(do not save snapshots)') parser.add_argument( '--snapshot_gap', type=int, default=1, help='Gap between snapshot iterations.') parser.add_argument( '--tabular_log_file', type=str, default='progress.csv', help='Name of the tabular log file (in csv).') parser.add_argument( '--text_log_file', type=str, default='debug.log', help='Name of the text log file (in pure text).') parser.add_argument( '--tensorboard_step_key', type=str, default=None, help=("Name of the step key in tensorboard_summary.")) parser.add_argument( '--params_log_file', type=str, default='params.json', help='Name of the parameter log file (in json).') parser.add_argument( '--variant_log_file', type=str, default='variant.json', help='Name of the variant log file (in json).') parser.add_argument( '--resume_from', type=str, default=None, help='Name of the pickle file to resume experiment from.') parser.add_argument( '--plot', type=ast.literal_eval, default=False, help='Whether to plot the iteration results') parser.add_argument( '--log_tabular_only', type=ast.literal_eval, default=False, help='Print only the tabular log information (in a horizontal format)') parser.add_argument('--seed', type=int, help='Random seed for numpy') parser.add_argument( '--args_data', type=str, help='Pickled data for objects') parser.add_argument( '--variant_data', type=str, help='Pickled data for variant configuration') parser.add_argument( '--use_cloudpickle', type=ast.literal_eval, default=False) args = parser.parse_args(argv[1:]) if args.seed is not None: set_seed(args.seed) # SIGINT is blocked for all processes created in parallel_sampler to avoid # the creation of sleeping and zombie processes. # # If the user interrupts run_experiment, there's a chance some processes # won't die due to a dead lock condition where one of the children in the # parallel sampler exits without releasing a lock once after it catches # SIGINT. # # Later the parent tries to acquire the same lock to proceed with his # cleanup, but it remains sleeping waiting for the lock to be released. # In the meantime, all the process in parallel sampler remain in the zombie # state since the parent cannot proceed with their clean up. with mask_signals([signal.SIGINT]): if args.n_parallel > 0: parallel_sampler.initialize(n_parallel=args.n_parallel) if args.seed is not None: parallel_sampler.set_seed(args.seed) if not args.plot: garage.plotter.Plotter.disable() garage.tf.plotter.Plotter.disable() if args.log_dir is None: log_dir = osp.join(default_log_dir, args.exp_name) else: log_dir = args.log_dir tabular_log_file = osp.join(log_dir, args.tabular_log_file) text_log_file = osp.join(log_dir, args.text_log_file) params_log_file = osp.join(log_dir, args.params_log_file) if args.variant_data is not None: variant_data = pickle.loads(base64.b64decode(args.variant_data)) variant_log_file = osp.join(log_dir, args.variant_log_file) logger.log_variant(variant_log_file, variant_data) else: variant_data = None if not args.use_cloudpickle: logger.log_parameters_lite(params_log_file, args) logger.add_text_output(text_log_file) logger.add_tabular_output(tabular_log_file) logger.set_tensorboard_dir(log_dir) prev_snapshot_dir = logger.get_snapshot_dir() prev_mode = logger.get_snapshot_mode() logger.set_snapshot_dir(log_dir) logger.set_snapshot_mode(args.snapshot_mode) logger.set_snapshot_gap(args.snapshot_gap) logger.set_log_tabular_only(args.log_tabular_only) logger.set_tensorboard_step_key(args.tensorboard_step_key) logger.push_prefix("[%s] " % args.exp_name) if args.resume_from is not None: data = joblib.load(args.resume_from) assert 'algo' in data algo = data['algo'] algo.train() else: # read from stdin if args.use_cloudpickle: import cloudpickle method_call = cloudpickle.loads(base64.b64decode(args.args_data)) try: method_call(variant_data) except BaseException: children = garage.plotter.Plotter.get_plotters() children += garage.tf.plotter.Plotter.get_plotters() if args.n_parallel > 0: children += [parallel_sampler] child_proc_shutdown(children) raise else: data = pickle.loads(base64.b64decode(args.args_data)) maybe_iter = concretize(data) if is_iterable(maybe_iter): for _ in maybe_iter: pass logger.set_snapshot_mode(prev_mode) logger.set_snapshot_dir(prev_snapshot_dir) logger.remove_tabular_output(tabular_log_file) logger.remove_text_output(text_log_file) logger.pop_prefix()
def run_experiment(argv): default_log_dir = config.LOG_DIR now = datetime.datetime.now(dateutil.tz.tzlocal()) # avoid name clashes when running distributed jobs rand_id = str(uuid.uuid4())[:5] timestamp = now.strftime('%Y_%m_%d_%H_%M_%S_%f_%Z') default_exp_name = 'experiment_%s_%s' % (timestamp, rand_id) parser = argparse.ArgumentParser() parser.add_argument( '--n_parallel', type=int, default=1, help=("Number of parallel workers to perform rollouts. " "0 => don't start any workers")) parser.add_argument( '--exp_name', type=str, default=default_exp_name, help='Name of the experiment.') parser.add_argument( '--log_dir', type=str, default=None, help='Path to save the log and iteration snapshot.') parser.add_argument( '--snapshot_mode', type=str, default='all', help='Mode to save the snapshot. Can be either "all" ' '(all iterations will be saved), "last" (only ' 'the last iteration will be saved), "gap" (every' '`snapshot_gap` iterations are saved), or "none" ' '(do not save snapshots)') parser.add_argument( '--snapshot_gap', type=int, default=1, help='Gap between snapshot iterations.') parser.add_argument( '--tabular_log_file', type=str, default='progress.csv', help='Name of the tabular log file (in csv).') parser.add_argument( '--text_log_file', type=str, default='debug.log', help='Name of the text log file (in pure text).') parser.add_argument( '--tensorboard_step_key', type=str, default=None, help=("Name of the step key in tensorboard_summary.")) parser.add_argument( '--params_log_file', type=str, default='params.json', help='Name of the parameter log file (in json).') parser.add_argument( '--variant_log_file', type=str, default='variant.json', help='Name of the variant log file (in json).') parser.add_argument( '--resume_from', type=str, default=None, help='Name of the pickle file to resume experiment from.') parser.add_argument( '--plot', type=ast.literal_eval, default=False, help='Whether to plot the iteration results') parser.add_argument( '--log_tabular_only', type=ast.literal_eval, default=False, help='Print only the tabular log information (in a horizontal format)') parser.add_argument('--seed', type=int, help='Random seed for numpy') parser.add_argument( '--args_data', type=str, help='Pickled data for stub objects') parser.add_argument( '--variant_data', type=str, help='Pickled data for variant configuration') parser.add_argument( '--use_cloudpickle', type=ast.literal_eval, default=False) args = parser.parse_args(argv[1:]) assert (os.environ.get("JOBLIB_START_METHOD", None) == "forkserver") if args.seed is not None: set_seed(args.seed) if args.n_parallel > 0: from garage.sampler import parallel_sampler parallel_sampler.initialize(n_parallel=args.n_parallel) if args.seed is not None: parallel_sampler.set_seed(args.seed) if not args.plot: garage.plotter.Plotter.disable() garage.tf.plotter.Plotter.disable() if args.log_dir is None: log_dir = osp.join(default_log_dir, args.exp_name) else: log_dir = args.log_dir tabular_log_file = osp.join(log_dir, args.tabular_log_file) text_log_file = osp.join(log_dir, args.text_log_file) params_log_file = osp.join(log_dir, args.params_log_file) if args.variant_data is not None: variant_data = pickle.loads(base64.b64decode(args.variant_data)) variant_log_file = osp.join(log_dir, args.variant_log_file) logger.log_variant(variant_log_file, variant_data) else: variant_data = None if not args.use_cloudpickle: logger.log_parameters_lite(params_log_file, args) logger.add_text_output(text_log_file) logger.add_tabular_output(tabular_log_file) logger.set_tensorboard_dir(log_dir) prev_snapshot_dir = logger.get_snapshot_dir() prev_mode = logger.get_snapshot_mode() logger.set_snapshot_dir(log_dir) logger.set_snapshot_mode(args.snapshot_mode) logger.set_snapshot_gap(args.snapshot_gap) logger.set_log_tabular_only(args.log_tabular_only) logger.set_tensorboard_step_key(args.tensorboard_step_key) logger.push_prefix("[%s] " % args.exp_name) if args.resume_from is not None: data = joblib.load(args.resume_from) assert 'algo' in data algo = data['algo'] algo.train() else: # read from stdin if args.use_cloudpickle: import cloudpickle method_call = cloudpickle.loads(base64.b64decode(args.args_data)) try: method_call(variant_data) except BaseException: if args.n_parallel > 0: parallel_sampler.terminate() raise else: data = pickle.loads(base64.b64decode(args.args_data)) maybe_iter = concretize(data) if is_iterable(maybe_iter): for _ in maybe_iter: pass logger.set_snapshot_mode(prev_mode) logger.set_snapshot_dir(prev_snapshot_dir) logger.remove_tabular_output(tabular_log_file) logger.remove_text_output(text_log_file) logger.pop_prefix()