def te_ppo_mt1_push(ctxt, seed, n_epochs, batch_size_per_task):
    """Train Task Embedding PPO with PointEnv.

    Args:
        ctxt (ExperimentContext): The experiment configuration used by
            :class:`~Trainer` to create the :class:`~Snapshotter`.
        seed (int): Used to seed the random number generator to produce
            determinism.
        n_epochs (int): Total number of epochs for training.
        batch_size_per_task (int): Batch size of samples for each task.

    """
    set_seed(seed)
    n_tasks = 50
    mt1 = metaworld.MT1('push-v1')
    task_sampler = MetaWorldTaskSampler(mt1,
                                        'train',
                                        lambda env, _: normalize(env),
                                        add_env_onehot=False)
    envs = [env_up() for env_up in task_sampler.sample(n_tasks)]
    env = MultiEnvWrapper(envs,
                          sample_strategy=round_robin_strategy,
                          mode='vanilla')

    latent_length = 2
    inference_window = 6
    batch_size = batch_size_per_task * n_tasks
    policy_ent_coeff = 2e-2
    encoder_ent_coeff = 2e-4
    inference_ce_coeff = 5e-2
    embedding_init_std = 0.1
    embedding_max_std = 0.2
    embedding_min_std = 1e-6
    policy_init_std = 1.0
    policy_max_std = None
    policy_min_std = None

    with TFTrainer(snapshot_config=ctxt) as trainer:

        task_embed_spec = TEPPO.get_encoder_spec(env.task_space,
                                                 latent_dim=latent_length)

        task_encoder = GaussianMLPEncoder(
            name='embedding',
            embedding_spec=task_embed_spec,
            hidden_sizes=(20, 20),
            std_share_network=True,
            init_std=embedding_init_std,
            max_std=embedding_max_std,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        traj_embed_spec = TEPPO.get_infer_spec(
            env.spec,
            latent_dim=latent_length,
            inference_window_size=inference_window)

        inference = GaussianMLPEncoder(
            name='inference',
            embedding_spec=traj_embed_spec,
            hidden_sizes=(20, 10),
            std_share_network=True,
            init_std=2.0,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        policy = GaussianMLPTaskEmbeddingPolicy(
            name='policy',
            env_spec=env.spec,
            encoder=task_encoder,
            hidden_sizes=(32, 16),
            std_share_network=True,
            max_std=policy_max_std,
            init_std=policy_init_std,
            min_std=policy_min_std,
        )

        baseline = LinearMultiFeatureBaseline(
            env_spec=env.spec, features=['observations', 'tasks', 'latents'])

        sampler = LocalSampler(agents=policy,
                               envs=env,
                               max_episode_length=env.spec.max_episode_length,
                               is_tf_worker=True,
                               worker_class=TaskEmbeddingWorker)

        algo = TEPPO(env_spec=env.spec,
                     policy=policy,
                     baseline=baseline,
                     sampler=sampler,
                     inference=inference,
                     discount=0.99,
                     lr_clip_range=0.2,
                     policy_ent_coeff=policy_ent_coeff,
                     encoder_ent_coeff=encoder_ent_coeff,
                     inference_ce_coeff=inference_ce_coeff,
                     use_softplus_entropy=True,
                     optimizer_args=dict(
                         batch_size=32,
                         max_optimization_epochs=10,
                         learning_rate=1e-3,
                     ),
                     inference_optimizer_args=dict(
                         batch_size=32,
                         max_optimization_epochs=10,
                     ),
                     center_adv=True,
                     stop_ce_gradient=True)

        trainer.setup(algo, env)
        trainer.train(n_epochs=n_epochs, batch_size=batch_size, plot=False)
Exemple #2
0
def te_ppo_mt50(ctxt, seed, n_epochs, batch_size_per_task):
    """Train Task Embedding PPO with PointEnv.

    Args:
        ctxt (garage.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        n_epochs (int): Total number of epochs for training.
        batch_size_per_task (int): Batch size of samples for each task.

    """
    set_seed(seed)
    tasks = MT50.get_train_tasks().all_task_names
    envs = [normalize(GymEnv(MT50.from_task(task))) for task in tasks]
    env = MultiEnvWrapper(envs,
                          sample_strategy=round_robin_strategy,
                          mode='del-onehot')

    latent_length = 6
    inference_window = 6
    batch_size = batch_size_per_task * len(tasks)
    policy_ent_coeff = 2e-2
    encoder_ent_coeff = 2e-4
    inference_ce_coeff = 5e-2
    max_episode_length = 100
    embedding_init_std = 0.1
    embedding_max_std = 0.2
    embedding_min_std = 1e-6
    policy_init_std = 1.0
    policy_max_std = None
    policy_min_std = None

    with LocalTFRunner(snapshot_config=ctxt) as runner:

        task_embed_spec = TEPPO.get_encoder_spec(env.task_space,
                                                 latent_dim=latent_length)

        task_encoder = GaussianMLPEncoder(
            name='embedding',
            embedding_spec=task_embed_spec,
            hidden_sizes=(20, 20),
            std_share_network=True,
            init_std=embedding_init_std,
            max_std=embedding_max_std,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        traj_embed_spec = TEPPO.get_infer_spec(
            env.spec,
            latent_dim=latent_length,
            inference_window_size=inference_window)

        inference = GaussianMLPEncoder(
            name='inference',
            embedding_spec=traj_embed_spec,
            hidden_sizes=(20, 10),
            std_share_network=True,
            init_std=2.0,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        policy = GaussianMLPTaskEmbeddingPolicy(
            name='policy',
            env_spec=env.spec,
            encoder=task_encoder,
            hidden_sizes=(32, 16),
            std_share_network=True,
            max_std=policy_max_std,
            init_std=policy_init_std,
            min_std=policy_min_std,
        )

        baseline = LinearMultiFeatureBaseline(
            env_spec=env.spec, features=['observations', 'tasks', 'latents'])

        algo = TEPPO(env_spec=env.spec,
                     policy=policy,
                     baseline=baseline,
                     inference=inference,
                     max_episode_length=max_episode_length,
                     discount=0.99,
                     lr_clip_range=0.2,
                     policy_ent_coeff=policy_ent_coeff,
                     encoder_ent_coeff=encoder_ent_coeff,
                     inference_ce_coeff=inference_ce_coeff,
                     use_softplus_entropy=True,
                     optimizer_args=dict(
                         batch_size=32,
                         max_episode_length=10,
                         learning_rate=1e-3,
                     ),
                     inference_optimizer_args=dict(
                         batch_size=32,
                         max_episode_length=10,
                     ),
                     center_adv=True,
                     stop_ce_gradient=True)

        runner.setup(algo,
                     env,
                     sampler_cls=LocalSampler,
                     sampler_args=None,
                     worker_class=TaskEmbeddingWorker)
        runner.train(n_epochs=n_epochs, batch_size=batch_size, plot=False)
Exemple #3
0
    def setup_method(self):
        super().setup_method()

        def circle(r, n):
            """Generate n points on a circle of radius r.

            Args:
                r (float): Radius of the circle.
                n (int): Number of points to generate.

            Yields:
                tuple(float, float): Coordinate of a point.

            """
            for t in np.arange(0, 2 * np.pi, 2 * np.pi / n):
                yield r * np.sin(t), r * np.cos(t)

        N = 4
        goals = circle(3.0, N)
        tasks = {
            str(i + 1): {
                'args': [],
                'kwargs': {
                    'goal': g,
                    'never_done': False,
                    'done_bonus': 0.0,
                }
            }
            for i, g in enumerate(goals)
        }

        latent_length = 1
        inference_window = 2
        self.batch_size = 100 * len(tasks)
        self.policy_ent_coeff = 2e-2
        self.encoder_ent_coeff = 2.2e-3
        self.inference_ce_coeff = 5e-2
        embedding_init_std = 1.0
        embedding_max_std = 2.0
        embedding_min_std = 0.38
        policy_init_std = 1.0
        policy_max_std = None
        policy_min_std = None

        task_names = sorted(tasks.keys())
        task_args = [tasks[t]['args'] for t in task_names]
        task_kwargs = [tasks[t]['kwargs'] for t in task_names]

        task_envs = [
            PointEnv(*t_args, **t_kwargs, max_episode_length=100)
            for t_args, t_kwargs in zip(task_args, task_kwargs)
        ]
        self.env = env = MultiEnvWrapper(task_envs,
                                         round_robin_strategy,
                                         mode='vanilla')
        self.max_episode_length = self.env.spec.max_episode_length

        latent_lb = np.zeros(latent_length, )
        latent_ub = np.ones(latent_length, )
        latent_space = akro.Box(latent_lb, latent_ub)

        obs_lb, obs_ub = env.observation_space.bounds
        obs_lb_flat = env.observation_space.flatten(obs_lb)
        obs_ub_flat = env.observation_space.flatten(obs_ub)
        traj_lb = np.stack([obs_lb_flat] * inference_window)
        traj_ub = np.stack([obs_ub_flat] * inference_window)
        traj_space = akro.Box(traj_lb, traj_ub)

        task_embed_spec = InOutSpec(env.task_space, latent_space)
        traj_embed_spec = InOutSpec(traj_space, latent_space)

        self.inference = GaussianMLPEncoder(
            name='inference',
            embedding_spec=traj_embed_spec,
            hidden_sizes=[20, 10],
            std_share_network=True,
            init_std=2.0,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        task_encoder = GaussianMLPEncoder(
            name='embedding',
            embedding_spec=task_embed_spec,
            hidden_sizes=[20, 20],
            std_share_network=True,
            init_std=embedding_init_std,
            max_std=embedding_max_std,
            output_nonlinearity=tf.nn.tanh,
            min_std=embedding_min_std,
        )

        self.policy = GaussianMLPTaskEmbeddingPolicy(
            name='policy',
            env_spec=env.spec,
            encoder=task_encoder,
            hidden_sizes=[32, 16],
            std_share_network=True,
            max_std=policy_max_std,
            init_std=policy_init_std,
            min_std=policy_min_std,
        )

        self.baseline = LinearMultiFeatureBaseline(
            env_spec=env.spec, features=['observations', 'tasks', 'latents'])