def forward_propagation_n(X, Y, parameters):
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    #Linear->ReLU->Linear->ReLU->Linear->Sigmoid
    Z1 = np.dot(W1, X) + b1
    A1 = gc_utils.relu(Z1)

    Z2 = np.dot(W2, A1) + b2
    A2 = gc_utils.relu(Z2)

    Z3 = np.dot(W3, A2) + b3
    A3 = gc_utils.sigmoid(Z3)

    # 计算成本
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(
        -np.log(1 - A3), 1 - Y)
    cost = (1 / m) * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache
Exemple #2
0
def forward_propagation_n(X, Y, parameters):
    m = X.shape[1]
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    W3 = parameters['W3']
    b3 = parameters['b3']

    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)

    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)

    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(
        -np.log(1 - A3), 1 - Y)
    cost = 1. / m * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache
Exemple #3
0
def forward_propagation_n(X, Y, parameters):
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    # Cost
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(
        -np.log(1 - A3), 1 - Y)
    cost = 1. / m * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache
def forward_propagation_n(X, Y, parameters):
    """
    Implements the forward propagation (and computes the cost) presented in Figure 3.
    
    Arguments:
    X -- training set for m examples
    Y -- labels for m examples 
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
            
    Returns:
    cost -- the cost function (logistic cost for one example)
    """

    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    cost = (1/m) * sum(np.squeeze((-np.log(A3)* Y) + (-np.log(1 - A3))*(1 - Y)))
    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
    
    return cost, cache
Exemple #5
0
def forward_propagation_n(X, Y, parameters):
    """
    Implements the forward propagation (and computes the cost) presented in Figure 3.
    
    Arguments:
    X -- training set for m examples
    Y -- labels for m examples 
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape (5, 4)
                    b1 -- bias vector of shape (5, 1)
                    W2 -- weight matrix of shape (3, 5)
                    b2 -- bias vector of shape (3, 1)
                    W3 -- weight matrix of shape (1, 3)
                    b3 -- bias vector of shape (1, 1)
    
    Returns:
    cost -- the cost function (logistic cost for one example)
    """
    # Run forward propagation
    # retrieve parameters
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # Deep Neural Network: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    # Cost
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(
        -np.log(1 - A3), 1 - Y
    )  # compute logprobabilities to avoid underflowing floats when calculating likelihood function
    cost = 1. / m * np.sum(logprobs)  # comput cost summation of logprobs

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache
Exemple #6
0
def forward_propagation_n(X, Y, parameters):
    """
    实现图中的前向传播(并计算成本)。

    参数:
        X - 训练集为m个例子
        Y -  m个示例的标签
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(5,4)
            b1  - 偏向量,维度为(5,1)
            W2  - 权重矩阵,维度为(3,5)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)

    返回:
        cost - 成本函数(logistic)
    """
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = gc_utils.relu(Z1)

    Z2 = np.dot(W2, A1) + b2
    A2 = gc_utils.relu(Z2)

    Z3 = np.dot(W3, A2) + b3
    A3 = gc_utils.sigmoid(Z3)

    # 计算成本
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(
        -np.log(1 - A3), 1 - Y)
    cost = (1 / m) * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache
Exemple #7
0
def forward_propagation_n(X, Y, parameters):
    """
    Implements the forward propagation (and computes the cost)

    Arguments:
    X -- training set for m examples
    Y -- labels for m examples
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape (5, 4)
                    b1 -- bias vector of shape (5, 1)
                    W2 -- weight matrix of shape (3, 5)
                    b2 -- bias vector of shape (3, 1)
                    W3 -- weight matrix of shape (1, 3)
                    b3 -- bias vector of shape (1, 1)

    Returns:
    cost -- the cost function
    """

    # retrieve parameters
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    # Cost
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(
        -np.log(1 - A3), 1 - Y)
    cost = 1. / m * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache
Exemple #8
0
def forward_propagation_n(X,Y,parameters):
    """
    实现如中的前向传播并计算成本
    
    参数:
        X - 训练集为m个例子
        Y - m个示例的标签
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,"W3","b3"的python的字典
            W1 - 权重矩阵,维度为(5,4)
            b1 - 偏向量,维度为(5,1)
            W2 - 权重矩阵。维度为(3,5)
            b2 - 偏向量,维度为(3,1)
            W3 - 权重矩阵,维度为(1,3)
            b3 - 偏向量,维度为(1,1)
            
    返回:
        cost - 成本函数(logistic)
    """
    
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    #Linear -> reLu -> Linear -> relu -> Linear -> sigmoid
    Z1 = np.dot(W1,X) + b1
    A1 = gc_utils.relu(Z1)
    
    Z2 = np.dot(W2,A1) + b2
    A2 = gc_utils.relu(Z2)
    
    Z3 = np.dot(W3,A2) + b3
    A3 = gc_utils.sigmoid(Z3)
    
    #计算成本
    logprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1-A3),1-Y)
    cost = (1/m) * np.sum(logprobs)
    
    cache = (Z1,A1,W1,b1,Z2,A2,W2,b2,Z3,A3,W3,b3)
    
    return cost,cache
def forward_propagation_n(X, Y, parameters):
    """
    Implements the forward propagation (and computes the cost) presented in Figure 3.
    
    Arguments:
    X -- training set for m examples
    Y -- labels for m examples 
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape (5, 4)
                    b1 -- bias vector of shape (5, 1)
                    W2 -- weight matrix of shape (3, 5)
                    b2 -- bias vector of shape (3, 1)
                    W3 -- weight matrix of shape (1, 3)
                    b3 -- bias vector of shape (1, 1)
    
    Returns:
    cost -- the cost function (logistic cost for one example)
    """
    
    # retrieve parameters
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    # Cost
    logprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = 1./m * np.sum(logprobs)
    
    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
    
    return cost, cache
Exemple #10
0
def forward_propagation_n(X, Y, parameters):
    """
    实现 3 层神经网络的前向传播和损失值计算
    
    :param X: training set for m examples
    :param Y: labels for m examples 
    :param parameters: python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape (5, 4)
                    b1 -- bias vector of shape (5, 1)
                    W2 -- weight matrix of shape (3, 5)
                    b2 -- bias vector of shape (3, 1)
                    W3 -- weight matrix of shape (1, 3)
                    b3 -- bias vector of shape (1, 1)
    
    :return cost: the cost function (logistic cost for one example)
    """

    # 从参数字典中取出参数
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    # Cost
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(
        -np.log(1 - A3), 1 - Y)
    cost = 1. / m * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache
def forward_propagation_n(X, Y, parameters):
    W1 = parameters['W1']
    B1 = parameters['b1']
    W2 = parameters['W2']
    B2 = parameters['b2']
    W3 = parameters['W3']
    B3 = parameters['b3']

    Z1 = np.dot(W1, X) + B1
    A1 = gc_utils.relu(Z1)

    Z2 = np.dot(W2, A1) + B2
    A2 = gc_utils.relu(Z2)

    Z3 = np.dot(W3, A2) + B3
    A3 = gc_utils.sigmoid(Z3)
    loss = -(np.dot(Y, np.log(A3.T)) + np.dot(
        (1 - Y), np.log(1 - A3.T))) / X.shape[1]
    cache = (Z1, A1, W1, B1, Z2, A2, W2, B2, Z3, A3, W3, B3)
    return loss, cache
def forward_propagation_n(X, Y, parameters):
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    logprobs = -(np.multiply(np.log(A3), Y) +
                 np.multiply(np.log(1 - A3), 1 - Y))
    cost = np.sum(logprobs) / m

    return cost, cache
Exemple #13
0
def forward_propagation_n(X, Y, parameters):
    """
    Implements the forward propagation (and computes the cost) presented in Figure 3.

    Arguments:
    X -- training set for m examples
    Y -- labels for m examples
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape (5, 4)
                    b1 -- bias vector of shape (5, 1)
                    W2 -- weight matrix of shape (3, 5)
                    b2 -- bias vector of shape (3, 1)
                    W3 -- weight matrix of shape (1, 3)
                    b3 -- bias vector of shape (1, 1)

    Returns:
    cost -- the cost function (logistic cost for one example)
    """
    m = X.shape[1]
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    W3 = parameters['W3']
    b3 = parameters['b3']

    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)

    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)

    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    cost = (-1 / m) * np.sum(np.multiply(Y, A3) + np.multiply(1 - Y, 1 - A3))

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache
Exemple #14
0
def forward_propagation_n(X,Y,parameters):
    '''
    实现图中的前向传播(并计算成本)
    :param X: 训练集为m个例子
    :param Y: m个示例标签
    :param parameters: 包含参数'W1','b1','W2','b2','W3','b3'的python字典 
            W1  - 权重矩阵,维度为(5,4)
            b1  - 偏向量,维度为(5,1)
            W2  - 权重矩阵,维度为(3,5)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)
    :return:
    cost - 成本函数(logistic)
    '''
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    W3 = parameters['W3']
    b3 = parameters['b3']

    #linear->relu->linear->relu->linear->sigmoid
    Z1 = np.dot(W1,X)+b1
    A1 = gc_utils.relu(Z1)

    Z2 = np.dot(W2,A1)+b2
    A2 = gc_utils.relu(Z2)

    Z3 = np.dot(W3,A2)+b3
    A3 = gc_utils.sigmoid(Z3)

    #计算成本
    logprobs = np.multiply(-np.log(A3),Y)+np.multiply(-np.log(1-A3),1-Y)
    cost = (1/m)*np.sum(logprobs)

    cache = (Z1,A1,W1,b1,Z2,A2,W2,b2,Z3,A3,W3,b3)
    return cost,cache
def forward_propagation_n(X, Y, parameters):
    """
    implements the forward propagation
    
    argument:
        X -- training set for m examples
        Y -- labels for m examples
        parameterese -- dictionary contraining your parameters
    
    returns:
        cost -- the cost function(logistic cost for one example)
    """
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    #linear -> relu -> linear -> relu -> linear -> sigmoid
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    #cost
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(
        -np.log(1 - A3), 1 - Y)
    cost = 1. / m * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache
Exemple #16
0
    def linear_activation_forward(A_prev, W, b, activation, dropout_keep_prob):
        linear_cache = (A_prev, W, b, dropout_keep_prob)
        Z = np.dot(W, A_prev) + b

        if activation == "sigmoid":
            A = sigmoid(Z)
        elif activation == "tanh":
            A = tanh(Z)
        elif activation == "relu":
            A = relu(Z)
        elif activation == "leaky_relu":
            A = leaky_relu(Z)

        if (dropout_keep_prob < 1.0):  #dropout regularization
            D = np.random.rand(A.shape[0], A.shape[1]) < dropout_keep_prob
            A = np.multiply(A, D)
            A /= dropout_keep_prob
        else:
            D = None

        activation_cache = (Z, D)
        cache = (linear_cache, activation_cache)
        return A, cache
    Returns:
    cost -- the cost function (logistic cost for one example)
    """

    # retrieve parameters
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
​
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)
​
    # Cost
    logprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = 1./m * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache
Now, run backward propagation.

def backward_propagation_n(X, Y, cache):
def forward_propagation_n(X, Y, parameters):
    """
    Implements the forward propagation (and computes the cost) presented in Figure 3.
    
    Arguments:
    X -- training set for m examples
    Y -- labels for m examples 
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape (5, 4)
                    b1 -- bias vector of shape (5, 1)
                    W2 -- weight matrix of shape (3, 5)
                    b2 -- bias vector of shape (3, 1)
                    W3 -- weight matrix of shape (1, 3)
                    b3 -- bias vector of shape (1, 1)
    
    Returns:
    cost -- the cost function (logistic cost for one example)
    """
    
    # retrieve parameters
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    # Cost
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = 1. / m * np.sum(logprobs)
    
    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
    
    return cost, cache
    def backward_propagation_n(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.
    
    Arguments:
    X -- input datapoint, of shape (input size, 1)
    Y -- true "label"
    cache -- cache output from forward_propagation_n()
    
    Returns:
    gradients -- A dictionary with the gradients of the cost with respect to each parameter, activation and pre-activation variables.
    """
    
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    dW3 = 1. / m * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)
    
    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1. / m * np.dot(dZ2, A1.T) * 2  # Should not multiply by 2
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)
    
    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 4. / m * np.sum(dZ1, axis=1, keepdims=True) # Should not multiply by 4
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
                 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
                 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients
    # GRADED FUNCTION: gradient_check_n

def gradient_check_n(parameters, gradients, X, Y, epsilon=1e-7):
    """
    Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_n
    
    Arguments:
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
    grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters. 
    x -- input datapoint, of shape (input size, 1)
    y -- true "label"
    epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
    
    Returns:
    difference -- difference (2) between the approximated gradient and the backward propagation gradient
    """
    
    # Set-up variables
    parameters_values, _ = dictionary_to_vector(parameters)
    grad = gradients_to_vector(gradients)
    num_parameters = parameters_values.shape[0]
    J_plus = np.zeros((num_parameters, 1))
    J_minus = np.zeros((num_parameters, 1))
    gradapprox = np.zeros((num_parameters, 1))
    
    # Compute gradapprox
    for i in range(num_parameters):
        
        # Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".
        # "_" is used because the function you have to outputs two parameters but we only care about the first one
        ### START CODE HERE ### (approx. 3 lines)
        thetaplus =  np.copy(parameters_values)                                       # Step 1
        thetaplus[i][0] = thetaplus[i][0] + epsilon                                   # Step 2
        J_plus[i], _ =  forward_propagation_n(X, Y, vector_to_dictionary(thetaplus))  # Step 3
        ### END CODE HERE ###
        
        # Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".
        ### START CODE HERE ### (approx. 3 lines)
        thetaminus = np.copy(parameters_values)                                       # Step 1
        thetaminus[i][0] = thetaminus[i][0] - epsilon                                 # Step 2        
        J_minus[i], _ = forward_propagation_n(X, Y, vector_to_dictionary(thetaminus)) # Step 3
        ### END CODE HERE ###
        
        # Compute gradapprox[i]
        ### START CODE HERE ### (approx. 1 line)
        gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)
        ### END CODE HERE ###
    
    # Compare gradapprox to backward propagation gradients by computing difference.
    ### START CODE HERE ### (approx. 1 line)
    numerator = np.linalg.norm(grad - gradapprox)                                     # Step 1'
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)                   # Step 2'
    difference = numerator / denominator                                              # Step 3'
    ### END CODE HERE ###

    if difference > 1e-7:
        print("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")
    else:
        print("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m")
    
    return difference
    X, Y, parameters = gradient_check_n_test_case()

cost, cache = forward_propagation_n(X, Y, parameters)
gradients = backward_propagation_n(X, Y, cache)
difference = gradient_check_n(parameters, gradients, X, Y)