Exemple #1
0
    def gd(self, batch_size=None, **kwargs):
        if self.verbose > 0:
            print(self.indent + '  TSNE.gd():')
            print(self.indent + '    specs:')

        if batch_size is None or batch_size >= self.n_samples:
            Xi = None
            F = lambda embedding: self.gradient(embedding)
            if self.verbose > 0:
                print(self.indent + '      gradient type : full')
        else:

            def Xi():
                indices = np.arange(self.n_samples)
                np.random.shuffle(indices)
                xi = {'indices': indices}
                return xi

            F = lambda X, indices: self.gradient(X, batch_size, indices)
            if self.verbose > 0:
                print(self.indent + '      gradient type : batch')
                print(self.indent + '      batch size :', batch_size)

        self.embedding, H = gd.single(self.embedding,
                                      F,
                                      Xi=Xi,
                                      verbose=self.verbose,
                                      indent=self.indent + '    ',
                                      **kwargs)
        self.update()
        if self.verbose > 0:
            print(self.indent + f'    final stress : {self.cost:0.2e}')
Exemple #2
0
    def smart_initialize(self,max_iter=[50,30],lr=[1,0.1],
                         batch_size=10,**kwargs):
        """\
        Computes an mds embedding (dimension embedding_dimension) of the 
        combined distances. Only works when self.Q_is_fixed is False (as this 
        is unnecessary otherwhise).

        Parameters :

        X0 : None or array
        Optional initial embedding (used to compute mds embedding)
        
        Q0 : None or list of arrays
        Optional initial projection parameters.
        """
        assert self.fixed_embedding is False
        assert self.fixed_projections is False
    
        if self.verbose > 0:
            print(self.indent+'  MPSE.smart_initialize():')

        distances = np.sum(self.distances,axis=0)/self.n_perspectives
        if self.weights is not None and self.weights[0] is not None:
            weights = np.product(self.weights,axis=0)
        else:
            weights = None
        vis = mds.MDS(distances,dim=self.embedding_dimension,min_grad=1e-4,
                      indent=self.indent+'    ',
                      initial_embedding=self.embedding,
                      weights = weights,
                      verbose=self.verbose)
        vis.gd(batch_size=batch_size, max_iter=max_iter[0],lr=lr[0],**kwargs)
        self.embedding = vis.X
        H = vis.computation_history[0]
        H['fixed_embedding'] = False
        H['fixed_projections'] = True
        self.computation_history.append(H)

        def Xi():
            indices = np.arange(self.n_samples)
            np.random.shuffle(indices)
            xi = {
                'indices' : indices
            }
            return xi
        F = lambda Q, indices : self.gradient(self.embedding,Q,
                                              batch_size=batch_size,
                                              return_embedding=False)
        Q0 = np.array(self.projections)
        self.projections, H = gd.single(Q0,F,Xi=Xi,p=self.proj.restrict,
                              max_iter=max_iter[1],lr=lr[1],
                              verbose=self.verbose,indent=self.indent+'    ',
                              **kwargs)
        H['fixed_embedding'] = True
        H['fixed_projections'] = False
        self.computation_history.append(H)
        return
Exemple #3
0
    def gd(self, batch_size=None, lr=None, fixed_projections='default',
           fixed_embedding='default', **kwargs):

        if fixed_projections == 'default':
            fixed_projections = self.fixed_projections
        if fixed_embedding == 'default':
            fixed_embedding = self.fixed_embedding
            
        assert batch_size is None or isinstance(batch_size,int)
        assert fixed_embedding is False or fixed_projections is False

        if lr is None:
            if self.visualization_method == 'mds':
                if fixed_projections:
                    lr = 1
                elif fixed_embedding:
                    lr = 0.01
                else:
                    lr = [1,0.01]
            elif self.visualization_method == 'tsne':
                if fixed_projections:
                    lr = 100
                elif fixed_embedding:
                    lr = 10
                else:
                    lr = [100,10]
            else:
                lr = [1,1]
                
        if self.verbose > 0:
            print(self.indent+'  MPSE.gd():')
            print(self.indent+f'      initial stress : {self.cost:0.2e}')

        if fixed_projections:
            if self.verbose > 0:
                print(self.indent+'      mpse method : fixed projections')
            if batch_size is None or batch_size >= self.n_samples:
                Xi = None
                F = lambda X : self.gradient(X,self.projections,
                                             return_projections=False)
            else:
                if self.verbose > 0:
                    print(self.indent+'      batch size :',batch_size)
                def Xi():
                    indices = np.arange(self.n_samples)
                    np.random.shuffle(indices)
                    xi = {
                        'indices' : indices
                    }
                    return xi
                F = lambda X, indices: self.gradient(X,self.projections,
                                                     batch_size=batch_size,
                                                     indices=indices,
                                                     return_projections=False)
            self.embedding, H = gd.single(
                self.embedding,F,Xi=Xi, verbose=self.verbose, lr=lr,
                indent=self.indent+'    ',**kwargs)
            H['fixed_projections'] = True
            H['fixed_embedding'] = False
            self.computation_history.append(H)
        elif fixed_embedding:
            if self.verbose > 0:
                print(self.indent+'      mpse method : fixed embedding')
            if batch_size is None or batch_size >= self.n_samples:
                Xi = None
                F = lambda Q : self.gradient(self.embedding,Q,
                                             return_embedding=False)
            else:
                if self.verbose > 0:
                    print(self.indent+'      batch size :',batch_size)
                def Xi():
                    indices = np.arange(self.n_samples)
                    np.random.shuffle(indices)
                    xi = {
                        'indices' : indices
                    }
                    return xi
                F = lambda Q, indices: self.gradient(self.embedding,Q,
                                                     batch_size=batch_size,
                                                     indices=indices,
                                                     return_embedding=False)
            Q0 = np.array(self.projections)
            self.projections, H = gd.single(Q0,F,Xi=Xi,p=self.proj.restrict,
                                  verbose=self.verbose,lr=lr,
                                  indent=self.indent+'    ',**kwargs)
            H['fixed_projections'] = False
            H['fixed_embedding'] = True
            self.computation_history.append(H)
        else:
            if self.verbose > 0:
                print(self.indent+'      fixed : None')
            if batch_size is None or batch_size >= self.n_samples:
                Xi = None
                F = lambda params : self.gradient(params[0],params[1])
            else:
                if self.verbose > 0:
                    print(self.indent+'      batch size :',batch_size)
                def Xi():
                    indices = np.arange(self.n_samples)
                    np.random.shuffle(indices)
                    xi = {
                        'indices' : indices
                    }
                    return xi
                F = lambda params, indices: self.gradient(params[0],params[1],
                                                     batch_size=batch_size,
                                                     indices=indices)
            params = [self.embedding,np.array(self.projections)]
            params, H = gd.multiple(params,F,Xi=Xi,p=[None,self.proj.restrict],
                                    verbose=self.verbose,lr=lr,
                                    indent=self.indent+'    ',**kwargs)
            self.embedding = params[0]
            self.projections = params[1]
            H['fixed_projections'] = False
            H['fixed_embedding'] = False
            self.computation_history.append(H)
            
        self.update()

        if self.verbose > 0:
            print(self.indent+f'    final cost : {self.cost:0.2f}')
            costs = ', '.join(f'{x:0.2f}' for x in self.individual_cost)
            print(self.indent+f'    individual costs : {costs}')