Exemple #1
0
        objectPoints_historic[1, -number_of_points:],
        '.',
        color='red',
    )
    pl.plot_plane()
    ax_object.set_title('Object Points')
    ax_object.set_xlim(-pl.radius - 0.05, pl.radius + 0.05)
    ax_object.set_ylim(-pl.radius - 0.05, pl.radius + 0.05)
    ax_object.set_aspect('equal')
    plt.show()
    plt.pause(0.001)

    if calc_metrics:
        #CONDITION NUMBER CALCULATION

        input_list = gd.extract_objectpoints_vars(new_objectPoints)
        input_list.append(np.array(cam.P))
        mat_cond = gd.matrix_condition_number_autograd(*input_list,
                                                       normalize=False)

        #CONDITION NUMBER WITH A NORMALIZED CALCULATION
        input_list = gd.extract_objectpoints_vars(new_objectPoints)
        input_list.append(np.array(cam.P))
        mat_cond_normalized = gd.matrix_condition_number_autograd(
            *input_list, normalize=True)

        DataOut['cond_number'].append(mat_cond)
        DataOut['cond_number_norm'].append(mat_cond_normalized)

        ##HOMOGRAPHY ERRORS
        ## TRUE VALUE OF HOMOGRAPHY OBTAINED FROM CAMERA PARAMETERS
Exemple #2
0
    DataSinglePose['Angle'] = angle
    DataSinglePose['Camera'] = cam.clone()
    DataSinglePose['Iters'] = []
    DataSinglePose['ObjectPoints'] = []
    DataSinglePose['ImagePoints'] = []
    DataSinglePose['CondNumber'] = []

    objectPoints_iter = np.copy(objectPoints_start)
    imagePoints_iter = np.array(cam.project(objectPoints_iter, False))

    gradient = gd.create_gradient(metric='condition_number', n=n)
    for i in range(1000):
        DataSinglePose['ObjectPoints'].append(objectPoints_iter)
        DataSinglePose['ImagePoints'].append(imagePoints_iter)

        input_list = gd.extract_objectpoints_vars(objectPoints_iter)
        input_list.append(np.array(cam.P))
        # TODO Yue: set parameter image_pts_measured as None and append it to input_list
        input_list.append(None)
        mat_cond = gd.matrix_condition_number_autograd(*input_list,
                                                       normalize=False)

        DataSinglePose['CondNumber'].append(mat_cond)

        #PLOT IMAGE POINTS
        plt.sca(ax_image)
        plt.ion()
        if i == 0:
            ax_image.cla()
            ax_image.plot(
                imagePoints_iter[0],
Exemple #3
0
    def calculate_metrics(self):
        new_objectPoints = self.ObjectPoints[-1]
        cam = self.Camera[-1]
        validation_plane = self.ValidationPlane
        new_imagePoints = np.array(cam.project(new_objectPoints, False))
        self.ImagePoints.append(new_imagePoints)
        #CONDITION NUMBER CALCULATION
        input_list = gd.extract_objectpoints_vars(new_objectPoints)
        input_list.append(np.array(cam.P))
        mat_cond = gd.matrix_condition_number_autograd(*input_list,
                                                       normalize=False)

        #CONDITION NUMBER WITH A NORMALIZED CALCULATION
        input_list = gd.extract_objectpoints_vars(new_objectPoints)
        input_list.append(np.array(cam.P))
        mat_cond_normalized = gd.matrix_condition_number_autograd(
            *input_list, normalize=True)

        self.CondNumber.append(mat_cond)
        self.CondNumberNorm.append(mat_cond_normalized)

        ##HOMOGRAPHY ERRORS
        ## TRUE VALUE OF HOMOGRAPHY OBTAINED FROM CAMERA PARAMETERS
        Hcam = cam.homography_from_Rt()
        ##We add noise to the image points and calculate the noisy homography
        homo_dlt_error_loop = []
        homo_HO_error_loop = []
        homo_CV_error_loop = []
        ippe_tvec_error_loop = []
        ippe_rmat_error_loop = []
        epnp_tvec_error_loop = []
        epnp_rmat_error_loop = []
        pnp_tvec_error_loop = []
        pnp_rmat_error_loop = []

        # WE CREATE NOISY IMAGE POINTS (BASED ON THE TRUE VALUES) AND CALCULATE
        # THE ERRORS WE THEN OBTAIN AN AVERAGE FOR EACH ONE
        for j in range(self.ValidationIters):
            new_imagePoints_noisy = cam.addnoise_imagePoints(
                new_imagePoints, mean=0, sd=self.ImageNoise)

            #Calculate the pose using IPPE (solution with least repro error)
            normalizedimagePoints = cam.get_normalized_pixel_coordinates(
                new_imagePoints_noisy)
            ippe_tvec1, ippe_rmat1, ippe_tvec2, ippe_rmat2 = pose_ippe_both(
                new_objectPoints, normalizedimagePoints, debug=False)
            ippeCam1 = cam.clone_withPose(ippe_tvec1, ippe_rmat1)

            #Calculate the pose using solvepnp EPNP
            debug = False
            epnp_tvec, epnp_rmat = pose_pnp(new_objectPoints,
                                            new_imagePoints_noisy, cam.K,
                                            debug, cv2.SOLVEPNP_EPNP, False)
            epnpCam = cam.clone_withPose(epnp_tvec, epnp_rmat)

            #Calculate the pose using solvepnp ITERATIVE
            pnp_tvec, pnp_rmat = pose_pnp(new_objectPoints,
                                          new_imagePoints_noisy, cam.K, debug,
                                          cv2.SOLVEPNP_ITERATIVE, False)
            pnpCam = cam.clone_withPose(pnp_tvec, pnp_rmat)

            #Calculate errors
            ippe_tvec_error1, ippe_rmat_error1 = ef.calc_estimated_pose_error(
                cam.get_tvec(), cam.R, ippeCam1.get_tvec(), ippe_rmat1)
            ippe_tvec_error_loop.append(ippe_tvec_error1)
            ippe_rmat_error_loop.append(ippe_rmat_error1)

            epnp_tvec_error, epnp_rmat_error = ef.calc_estimated_pose_error(
                cam.get_tvec(), cam.R, epnpCam.get_tvec(), epnp_rmat)
            epnp_tvec_error_loop.append(epnp_tvec_error)
            epnp_rmat_error_loop.append(epnp_rmat_error)

            pnp_tvec_error, pnp_rmat_error = ef.calc_estimated_pose_error(
                cam.get_tvec(), cam.R, pnpCam.get_tvec(), pnp_rmat)
            pnp_tvec_error_loop.append(pnp_tvec_error)
            pnp_rmat_error_loop.append(pnp_rmat_error)

            #Homography Estimation from noisy image points

            #DLT TRANSFORM
            Xo = new_objectPoints[[0, 1, 3], :]
            Xi = new_imagePoints_noisy
            Hnoisy_dlt, _, _ = homo2d.homography2d(Xo, Xi)
            Hnoisy_dlt = Hnoisy_dlt / Hnoisy_dlt[2, 2]

            #HO METHOD
            Xo = new_objectPoints[[0, 1, 3], :]
            Xi = new_imagePoints_noisy
            Hnoisy_HO = hh(Xo, Xi)

            #OpenCV METHOD
            Xo = new_objectPoints[[0, 1, 3], :]
            Xi = new_imagePoints_noisy
            Hnoisy_OpenCV, _ = cv2.findHomography(Xo[:2].T.reshape(1, -1, 2),
                                                  Xi[:2].T.reshape(1, -1, 2))

            ## ERRORS FOR THE  DLT HOMOGRAPHY
            ## VALIDATION OBJECT POINTS
            validation_objectPoints = validation_plane.get_points()
            validation_imagePoints = np.array(
                cam.project(validation_objectPoints, False))
            Xo = np.copy(validation_objectPoints)
            Xo = np.delete(Xo, 2, axis=0)
            Xi = np.copy(validation_imagePoints)
            homo_dlt_error_loop.append(
                ef.validation_points_error(Xi, Xo, Hnoisy_dlt))

            ## ERRORS FOR THE  HO HOMOGRAPHY
            ## VALIDATION OBJECT POINTS
            validation_objectPoints = validation_plane.get_points()
            validation_imagePoints = np.array(
                cam.project(validation_objectPoints, False))
            Xo = np.copy(validation_objectPoints)
            Xo = np.delete(Xo, 2, axis=0)
            Xi = np.copy(validation_imagePoints)
            homo_HO_error_loop.append(
                ef.validation_points_error(Xi, Xo, Hnoisy_HO))

            ## ERRORS FOR THE  OpenCV HOMOGRAPHY
            ## VALIDATION OBJECT POINTS
            validation_objectPoints = validation_plane.get_points()
            validation_imagePoints = np.array(
                cam.project(validation_objectPoints, False))
            Xo = np.copy(validation_objectPoints)
            Xo = np.delete(Xo, 2, axis=0)
            Xi = np.copy(validation_imagePoints)
            homo_CV_error_loop.append(
                ef.validation_points_error(Xi, Xo, Hnoisy_OpenCV))

        self.Homo_DLT_mean.append(np.mean(homo_dlt_error_loop))
        self.Homo_HO_mean.append(np.mean(homo_HO_error_loop))
        self.Homo_CV_mean.append(np.mean(homo_CV_error_loop))
        self.ippe_tvec_error_mean.append(np.mean(ippe_tvec_error_loop))
        self.ippe_rmat_error_mean.append(np.mean(ippe_rmat_error_loop))
        self.epnp_tvec_error_mean.append(np.mean(epnp_tvec_error_loop))
        self.epnp_rmat_error_mean.append(np.mean(epnp_rmat_error_loop))
        self.pnp_tvec_error_mean.append(np.mean(pnp_tvec_error_loop))
        self.pnp_rmat_error_mean.append(np.mean(pnp_rmat_error_loop))

        self.Homo_DLT_std.append(np.std(homo_dlt_error_loop))
        self.Homo_HO_std.append(np.std(homo_HO_error_loop))
        self.Homo_CV_std.append(np.std(homo_CV_error_loop))
        self.ippe_tvec_error_std.append(np.std(ippe_tvec_error_loop))
        self.ippe_rmat_error_std.append(np.std(ippe_rmat_error_loop))
        self.epnp_tvec_error_std.append(np.std(epnp_tvec_error_loop))
        self.epnp_rmat_error_std.append(np.std(epnp_rmat_error_loop))
        self.pnp_tvec_error_std.append(np.std(pnp_tvec_error_loop))
        self.pnp_rmat_error_std.append(np.std(pnp_rmat_error_loop))
#cam.look_at([0,0,0])

#cam.set_R_axisAngle(1.0,  0.0,  0.0, np.deg2rad(110.0))
#cam.set_t(0.0,-0.3,0.1, frame='world')

## Define a Display plane
pl = Plane(origin=np.array([0, 0, 0]),
           normal=np.array([0, 0, 1]),
           size=(0.3, 0.3),
           n=(2, 2))
pl = CircularPlane()
pl.random(n=number_of_points, r=0.01, min_sep=0.01)

objectPoints = pl.get_points()

x1, y1, x2, y2, x3, y3, x4, y4 = gd.extract_objectpoints_vars(objectPoints)
imagePoints_true = np.array(cam.project(objectPoints, False))
imagePoints_measured = cam.addnoise_imagePoints(imagePoints_true, mean=0, sd=4)
repro = gd.repro_error_autograd(x1, y1, x2, y2, x3, y3, x4, y4, cam.P,
                                imagePoints_measured)
#%%

## CREATE A SET OF IMAGE POINTS FOR VALIDATION OF THE HOMOGRAPHY ESTIMATION
validation_plane = Plane(origin=np.array([0, 0, 0]),
                         normal=np.array([0, 0, 1]),
                         size=(0.3, 0.3),
                         n=(4, 4))
validation_plane.uniform()

## we create the gradient for the point distribution
normalize = False