Exemple #1
0
    n = 5
    lb = -5.12 * np.ones((1, n))
    ub = 5.12 * np.ones((1, n))
    ranges = np.vstack([lb, ub])  # 生成自变量的范围矩阵
    lbin = np.ones((1, n))
    ubin = np.ones((1, n))
    borders = np.vstack([lbin, ubin])  # 生成自变量的边界矩阵(1表示变量的区间是闭区间)
    precisions = [
        1
    ] * n  # 根据crtfld的函数特性,这里需要设置精度为任意正值,否则在生成区域描述器时会默认为整数编码,并对变量范围作出一定调整
    FieldDR = ga.crtfld(ranges, borders, precisions)  # 生成区域描述器
    # 调用编程模板
    [pop_trace, var_trace,
     times] = ga.sga_new_real_templet(AIM_M,
                                      'aimfuc',
                                      None,
                                      None,
                                      FieldDR,
                                      problem='R',
                                      maxormin=1,
                                      MAXGEN=1000,
                                      NIND=100,
                                      SUBPOP=1,
                                      GGAP=0.9,
                                      selectStyle='sus',
                                      recombinStyle='xovdprs',
                                      recopt=None,
                                      pm=None,
                                      distribute=True,
                                      drawing=1)
Exemple #2
0
    调用算法模板时可以设置drawing=2,此时算法模板将在种群进化过程中绘制动画,但注意执行前要在Python控制台执行命令matplotlib qt5。
"""

import numpy as np
import geatpy as ga

# 获取函数接口地址
AIM_M = __import__('aimfuc')
# 变量设置
ranges = np.vstack([np.zeros((1, 4)), np.ones((1, 4))])  # 生成自变量的范围矩阵
borders = np.vstack([np.ones((1, 4)), np.ones((1, 4))])  # 生成自变量的边界矩阵
FieldDR = ga.crtfld(ranges, borders)  # 生成区域描述器
# 调用编程模板(设置problem = 'I'处理离散型变量问题,详见该算法模板的源代码)
[pop_trace, var_trace, times] = ga.sga_new_real_templet(AIM_M,
                                                        'aimfuc',
                                                        None,
                                                        None,
                                                        FieldDR,
                                                        problem='I',
                                                        maxormin=-1,
                                                        MAXGEN=50,
                                                        NIND=10,
                                                        SUBPOP=1,
                                                        GGAP=0.9,
                                                        selectStyle='sus',
                                                        recombinStyle='xovdp',
                                                        recopt=0.9,
                                                        pm=0.1,
                                                        distribute=True,
                                                        drawing=1)
Exemple #3
0
if __name__ == "__main__":
    AIM_M = __import__('main')  # 获取函数接口所在文件的地址
    # 变量设置
    ranges = np.vstack(
        [32 * np.ones((1, len(words))), 122 * np.ones(
            (1, len(words)))])  # 生成自变量的范围矩阵
    borders = np.vstack(
        [np.ones((1, len(words))), 122 * np.ones(
            (1, len(words)))])  # 生成自变量的边界矩阵
    FieldDR = ga.crtfld(ranges, borders)  # 生成区域描述器
    # 调用编程模板
    [pop_trace, var_trace,
     times] = ga.sga_new_real_templet(AIM_M,
                                      'aim',
                                      None,
                                      None,
                                      FieldDR,
                                      problem='I',
                                      maxormin=1,
                                      MAXGEN=2000,
                                      NIND=50,
                                      SUBPOP=1,
                                      GGAP=0.9,
                                      selectStyle='sus',
                                      recombinStyle='xovdp',
                                      recopt=0.9,
                                      pm=0.1,
                                      drawing=1)
    # 输出结果
    for num in var_trace[np.argmin(pop_trace[:, 1]), :]:
        print(chr(int(num)), end='')