Exemple #1
0
def test_3d_4b():
    """Alfven operator."""
    x, y, z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    bx = Constant('bx')
    by = Constant('by')
    bz = Constant('bz')
    b = Tuple(bx, by, bz)

    c0, c1, c2 = symbols('c0 c1 c2')

    a = Lambda((x, y, z, v, u),
               (c0 * Dot(u, v) - c1 * Div(u) * Div(v) +
                c2 * Dot(Curl(Cross(b, u)), Curl(Cross(b, v)))))
    print('> input       := {0}'.format(a))

    # ...
    expr = construct_weak_form(a, dim=DIM, is_block=True, verbose=True)
    print('> weak form := {0}'.format(expr))
    # ...

    print('')
Exemple #2
0
def test_3d_4b():
    """Alfven operator."""
    x,y,z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    bx = Constant('bx')
    by = Constant('by')
    bz = Constant('bz')
    b = Tuple(bx, by, bz)

    c0,c1,c2 = symbols('c0 c1 c2')

    a = Lambda((x,y,z,v,u), (  c0 * Dot(u, v)
                             - c1 * Div(u) * Div(v)
                             + c2 *Dot(Curl(Cross(b,u)), Curl(Cross(b,v)))))
    print('> input       := {0}'.format(a))

    expr = gelatize(a, dim=DIM)
    print('> gelatized   := {0}'.format(expr))

    expr, info = initialize_weak_form(expr, dim=DIM)
    print('> temp form   :=')
    # for a nice printing, we print the dictionary entries one by one
    for key, value in list(expr.items()):
        print('\t\t', key, '\t', value)

    expr = normalize_weak_from(expr)
    print('> normal form := {0}'.format(expr))

    print('')
Exemple #3
0
def test_3d_scalar_2():
    print('============== test_3d_scalar_2 ================')

    # ... define the weak formulation
    x, y, z = symbols('x y z')

    u = Symbol('u')
    v = Symbol('v')

    alpha = Constant('alpha')
    nu = Constant('nu')

    a = Lambda((x, v, u), alpha * Dot(Grad(u), Grad(v)) + nu * u * v)
    # ...

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    V = TensorFemSpace(V1, V2, V3)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_2',
                               a,
                               V,
                               d_constants={'nu': 0.1},
                               d_args={'alpha': 'double'},
                               backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_2',
                                a,
                                V,
                                d_constants={'nu': 0.1},
                                d_args={'alpha': 'double'},
                                backend='fortran')

    M_py = assemble_matrix(V, kernel_py, args={'alpha': 2.0})
    M_f90 = assemble_matrix(V, kernel_f90, args={'alpha': 2.0})
    # ...

    assert_identical_coo(M_py, M_f90)
Exemple #4
0
def test_2d_block_3():
    print('============== test_2d_block_3 ================')

    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    epsilon = Constant('epsilon')

    Laplace = lambda v, u: Dot(Grad(v), Grad(u))
    Mass = lambda v, u: v * u

    u1, u2, p = symbols('u1 u2 p')
    v1, v2, q = symbols('v1 v2 q')

    a = Lambda((x, y, v1, v2, q, u1, u2, p),
               Laplace(v1, u1) - dx(v1) * p + Laplace(v2, u2) - dy(v2) * p +
               q * (dx(u1) + dy(u2)) + epsilon * Mass(q, p))

    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    V = VectorFemSpace(V, V, V)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_block_3',
                               a,
                               V,
                               d_args={'epsilon': 'double'},
                               backend='python')
    kernel_f90 = compile_kernel('kernel_block_3',
                                a,
                                V,
                                d_args={'epsilon': 'double'},
                                backend='fortran')

    M_py = assemble_matrix(V, kernel_py, args={'epsilon': 1.e-3})
    M_f90 = assemble_matrix(V, kernel_f90, args={'epsilon': 1.e-3})
    # ...

    assert_identical_coo(M_py, M_f90)

    print('')
Exemple #5
0
def test_1d_scalar_2():
    print('============== test_1d_scalar_2 ================')

    # ... define the weak formulation
    x = Symbol('x')

    u = Symbol('u')
    v = Symbol('v')

    alpha = Constant('alpha')
    nu = Constant('nu')

    a = Lambda((x, v, u), alpha * Dot(Grad(u), Grad(v)) + nu * u * v)
    # ...

    # ...  create a finite element space
    p = 3
    ne = 64

    print('> Grid   :: {ne}'.format(ne=ne))
    print('> Degree :: {p}'.format(p=p))

    grid = linspace(0., 1., ne + 1)

    V = SplineSpace(p, grid=grid)
    # ...

    # ...
    kernel_py = compile_kernel('kernel_scalar_2',
                               a,
                               V,
                               d_constants={'nu': 0.1},
                               d_args={'alpha': 'double'},
                               backend='python')
    kernel_f90 = compile_kernel('kernel_scalar_2',
                                a,
                                V,
                                d_constants={'nu': 0.1},
                                d_args={'alpha': 'double'},
                                backend='fortran')

    M_py = assemble_matrix(V, kernel_py, args={'alpha': 2.0})
    M_f90 = assemble_matrix(V, kernel_f90, args={'alpha': 2.0})
    # ...

    assert_identical_coo(M_py, M_f90)
Exemple #6
0
def test_2d_4():
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    bx = Constant('bx')
    by = Constant('by')
    b = Tuple(bx, by)

    a = Lambda((x, y, v, u), 0.2 * u * v + Dot(b, Grad(v)) * u)
    print('> input       := {0}'.format(a))

    # ...
    expr = construct_weak_form(a, dim=DIM, is_block=False)
    print('> weak form := {0}'.format(expr))
    # ...

    print('')
Exemple #7
0
def test_2d_4():
    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    bx = Constant('bx')
    by = Constant('by')
    b = Tuple(bx, by)

    a = Lambda((x, y, v, u), 0.2 * u * v + Dot(b, Grad(v)) * u)
    print('> input       := {0}'.format(a))

    expr = gelatize(a, dim=DIM)
    print('> gelatized   := {0}'.format(expr))

    expr, info = initialize_weak_form(expr, dim=DIM)
    print('> temp form   := {0}'.format(expr))

    expr = normalize_weak_from(expr)
    print('> normal form := {0}'.format(expr))

    print('')
Exemple #8
0
def test_1d_2():
    x = Symbol('x')

    u = Symbol('u')
    v = Symbol('v')

    b = Constant('b')

    a = Lambda((x,v,u), Dot(Grad(b*u), Grad(v)) + u*v)
    print('> input       := {0}'.format(a))

    # ...
    expr = construct_weak_form(a, dim=DIM)
    print('> weak form := {0}'.format(expr))
    # ...

    print('')
Exemple #9
0
def test_1d_scalar_2():
    print('============== test_1d_scalar_2 ================')

    x = Symbol('x')

    u = Symbol('u')
    v = Symbol('v')

    b = Constant('b')

    a = Lambda((x, v, u), Dot(Grad(b * u), Grad(v)) + u * v)
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p = 3
    ne = 64

    print('> Grid   :: {ne}'.format(ne=ne))
    print('> Degree :: {p}'.format(p=p))

    grid = linspace(0., 1., ne + 1)

    V = SplineSpace(p, grid=grid)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_scalar_2',
                                a,
                                V,
                                d_constants={'b': 0.1},
                                backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne + 1)
    x1 = linspace(0., 1., ne + 1)
    e = zeros(ne + 1)
    symbol_f90(x1, t1, e)
    # ...

    print('')
Exemple #10
0
def test_1d_2():
    x,y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

#    b = Function('b')
    b = Constant('b')

    a = Lambda((x,y,v,u), Dot(Grad(b*u), Grad(v)) + u*v)
    print('> input       := {0}'.format(a))

    expr = gelatize(a, dim=DIM)
    print('> gelatized   := {0}'.format(expr))

    expr = normalize_weak_from(expr)
    print('> normal form := {0}'.format(expr))

    print('')
Exemple #11
0
def test_2d_scalar_2():
    print('============== test_2d_scalar_2 ================')

    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    c = Constant('c')

    b0 = Constant('b0')
    b1 = Constant('b1')
    b = Tuple(b0, b1)

    a = Lambda((x, y, v, u),
               c * u * v + Dot(b, Grad(v)) * u + Dot(b, Grad(u)) * v)
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_scalar_2',
                                a,
                                V,
                                d_constants={
                                    'b0': 0.1,
                                    'b1': 1.,
                                    'c': 0.2
                                },
                                backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    e = zeros((ne1 + 1, ne2 + 1), order='F')
    symbol_f90(x1, x2, t1, t2, e)
    # ...

    print('')
Exemple #12
0
def test_2d_block_2():
    print('============== test_2d_block_2 ================')

    x, y = symbols('x y')

    u = Symbol('u')
    v = Symbol('v')

    epsilon = Constant('epsilon')

    Laplace = lambda v, u: Dot(Grad(v), Grad(u))
    Mass = lambda v, u: v * u

    u1, u2, p = symbols('u1 u2 p')
    v1, v2, q = symbols('v1 v2 q')

    a = Lambda((x, y, v1, v2, q, u1, u2, p),
               Laplace(v1, u1) - dx(v1) * p + Laplace(v2, u2) - dy(v2) * p +
               q * (dx(u1) + dy(u2)) + epsilon * Mass(q, p))

    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    ne1 = 8
    ne2 = 8

    print('> Grid   :: [{ne1},{ne2}]'.format(ne1=ne1, ne2=ne2))
    print('> Degree :: [{p1},{p2}]'.format(p1=p1, p2=p2))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)

    V = TensorFemSpace(V1, V2)
    V = VectorFemSpace(V, V, V)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # TODO not working yet => need complex numbers
    #    # ...
    #    symbol_f90 = compile_symbol('symbol_block_2', a, V,
    #                                d_constants={'epsilon': 0.1},
    #                                backend='fortran')
    #    # ...
    #
    #    # ... example of symbol evaluation
    #    t1 = linspace(-pi,pi, ne1+1)
    #    t2 = linspace(-pi,pi, ne2+1)
    #    x1 = linspace(0.,1., ne1+1)
    #    x2 = linspace(0.,1., ne2+1)
    #    e = zeros((2, 2, ne1+1, ne2+1), order='F')
    #    symbol_f90(x1,x2,t1,t2, e)
    #    # ...

    print('')
Exemple #13
0
def test_3d_block_4():
    print('============== test_3d_block_4 ================')
    """Alfven operator."""
    x, y, z = symbols('x y z')

    u = IndexedBase('u')
    v = IndexedBase('v')

    bx = Constant('bx')
    by = Constant('by')
    bz = Constant('bz')
    b = Tuple(bx, by, bz)

    c0 = Constant('c0')
    c1 = Constant('c1')
    c2 = Constant('c2')

    a = Lambda((x, y, z, v, u),
               (c0 * Dot(u, v) + c1 * Div(u) * Div(v) +
                c2 * Dot(Curl(Cross(b, u)), Curl(Cross(b, v)))))
    print('> input       := {0}'.format(a))

    # ...  create a finite element space
    p1 = 2
    p2 = 2
    p3 = 2
    ne1 = 2
    ne2 = 2
    ne3 = 2
    # ...

    print('> Grid   :: [{},{},{}]'.format(ne1, ne2, ne3))
    print('> Degree :: [{},{},{}]'.format(p1, p2, p3))

    grid_1 = linspace(0., 1., ne1 + 1)
    grid_2 = linspace(0., 1., ne2 + 1)
    grid_3 = linspace(0., 1., ne3 + 1)

    V1 = SplineSpace(p1, grid=grid_1)
    V2 = SplineSpace(p2, grid=grid_2)
    V3 = SplineSpace(p3, grid=grid_3)

    Vx = TensorFemSpace(V1, V2, V3)
    Vy = TensorFemSpace(V1, V2, V3)
    Vz = TensorFemSpace(V1, V2, V3)

    V = VectorFemSpace(Vx, Vy, Vz)
    # ...

    # ... create a glt symbol from a string without evaluation
    expr = glt_symbol(a, space=V)
    print('> glt symbol  := {0}'.format(expr))
    # ...

    # ...
    symbol_f90 = compile_symbol('symbol_block_4',
                                a,
                                V,
                                d_constants={
                                    'bx': 0.1,
                                    'by': 1.,
                                    'bz': 0.2,
                                    'c0': 0.1,
                                    'c1': 1.,
                                    'c2': 1.
                                },
                                backend='fortran')
    # ...

    # ... example of symbol evaluation
    t1 = linspace(-pi, pi, ne1 + 1)
    t2 = linspace(-pi, pi, ne2 + 1)
    t3 = linspace(-pi, pi, ne3 + 1)
    x1 = linspace(0., 1., ne1 + 1)
    x2 = linspace(0., 1., ne2 + 1)
    x3 = linspace(0., 1., ne3 + 1)
    e = zeros((3, 3, ne1 + 1, ne2 + 1, ne3 + 1), order='F')
    symbol_f90(x1, x2, x3, t1, t2, t3, e)
    # ...

    print('')
Exemple #14
0
def compile_kernel(name,
                   expr,
                   V,
                   namespace=globals(),
                   verbose=False,
                   d_constants={},
                   d_args={},
                   context=None,
                   backend='python',
                   export_pyfile=True):
    """returns a kernel from a Lambda expression on a Finite Elements space."""

    from spl.fem.vector import VectorFemSpace
    from spl.fem.splines import SplineSpace
    from spl.fem.tensor import TensorFemSpace

    # ... parametric dimension
    dim = V.pdim
    # ...

    # ... number of partial derivatives
    #     TODO must be computed from the weak form then we re-initialize the
    #     space
    if isinstance(V, SplineSpace):
        nderiv = V.nderiv
    elif isinstance(V, TensorFemSpace):
        nderiv = max(W.nderiv for W in V.spaces)
    elif isinstance(V, VectorFemSpace):
        nds = []
        for W in V.spaces:
            if isinstance(W, SplineSpace):
                nderiv = W.nderiv
            elif isinstance(W, TensorFemSpace):
                nderiv = max(X.nderiv for X in W.spaces)
            nds.append(nderiv)
        nderiv = max(nds)
    # ...

    # ...
    if verbose:
        print('> input     := {0}'.format(expr))
    # ...

    # ...
    fields = [i for i in expr.free_symbols if isinstance(i, Field)]
    if verbose:
        print('> Fields = ', fields)
    # ...

    # ...
    expr = construct_weak_form(expr,
                               dim=dim,
                               is_block=isinstance(V, VectorFemSpace))
    if verbose:
        print('> weak form := {0}'.format(expr))
    # ...

    # ... contants
    #     for each argument, we compute its datatype (needed for Pyccel)
    #     case of Numeric Native Python types
    #     this means that a has a given value (1, 1.0 etc)
    if d_constants:
        for k, a in list(d_constants.items()):
            if not isinstance(a, Number):
                raise TypeError('Expecting a Python Numeric object')

        # update the weak formulation using the given arguments
        _d = {}
        for k, v in list(d_constants.items()):
            if isinstance(k, str):
                _d[Constant(k)] = v
            else:
                _d[k] = v

        expr = expr.subs(_d)

    args = ''
    dtypes = ''
    if d_args:
        # ... additional arguments
        #     for each argument, we compute its datatype (needed for Pyccel)
        for k, a in list(d_args.items()):
            # otherwise it can be a string, that specifies its type
            if not isinstance(a, str):
                raise TypeError('Expecting a string')

            if not a in ['int', 'double', 'complex']:
                raise TypeError('Wrong type for {} :: {}'.format(k, a))

        # we convert the dictionaries to OrderedDict, to avoid wrong ordering
        d_args = OrderedDict(sorted(list(d_args.items())))

        names = []
        dtypes = []
        for n, d in list(d_args.items()):
            names.append(n)
            dtypes.append(d)

        args = ', '.join('{}'.format(a) for a in names)
        dtypes = ', '.join('{}'.format(a) for a in dtypes)

        args = ', {}'.format(args)
        dtypes = ', {}'.format(dtypes)

        # TODO check what are the free_symbols of expr,
        #      to make sure the final code will compile
        #      the remaining free symbols must be the trial/test basis functions,
        #      and the coordinates
    # ...

    # ...
    if isinstance(V, VectorFemSpace) and not (V.is_block):
        raise NotImplementedError(
            'We only treat the case of a block space, for '
            'which all components have are identical.')
    # ...

    # ...
    pattern = 'scalar'
    if isinstance(V, VectorFemSpace):
        if V.is_block:
            pattern = 'block'

        else:
            raise NotImplementedError(
                'We only treat the case of a block space, for '
                'which all components have are identical.')

    # ...

    # ...
    template_str = 'template_{dim}d_{pattern}'.format(dim=dim, pattern=pattern)
    try:
        template = eval(template_str)
    except:
        raise ValueError('Could not find the corresponding template {}'.format(
            template_str))
    # ...

    # ... identation (def function body)
    tab = ' ' * 4
    # ...

    # ... field coeffs
    if fields:
        field_coeffs = OrderedDict()
        for f in fields:
            coeffs = 'coeff_{}'.format(f.name)
            field_coeffs[str(f.name)] = coeffs

        ls = [v for v in list(field_coeffs.values())]
        field_coeffs_str = ', '.join(i for i in ls)

        # add ',' for kernel signature
        field_coeffs_str = ', {}'.format(field_coeffs_str)

        eval_field_str = print_eval_field(expr,
                                          V.pdim,
                                          fields,
                                          verbose=verbose)

        # ...
        if dim == 1:
            e_pattern = '{field}{deriv} = {field}{deriv}_values[g1]'
        elif dim == 2:
            e_pattern = '{field}{deriv} = {field}{deriv}_values[g1,g2]'
        elif dim == 3:
            e_pattern = '{field}{deriv} = {field}{deriv}_values[g1,g2,g3]'
        else:
            raise NotImplementedError('only 1d, 2d and 3d are available')

        field_values = OrderedDict()
        free_names = [str(f.name) for f in expr.free_symbols]
        for f in fields:
            ls = []
            if f.name in free_names:
                ls.append(f.name)
            for deriv in BASIS_PREFIX:
                f_d = '{field}_{deriv}'.format(field=f.name, deriv=deriv)
                if f_d in free_names:
                    ls.append(f_d)

            field_values[f.name] = ls

        tab_base = tab
        # ... update identation to be inside the loop
        for i in range(0, 3 * dim):
            tab += ' ' * 4

        lines = []
        for k, fs in list(field_values.items()):
            coeff = field_coeffs[k]
            for f in fs:
                ls = f.split('_')
                if len(ls) == 1:
                    deriv = ''
                else:
                    deriv = '_{}'.format(ls[-1])
                line = e_pattern.format(field=k, deriv=deriv)
                line = tab + line

                lines.append(line)

        field_value_str = '\n'.join(line for line in lines)
        tab = tab_base
        # ...

        # ...
        field_types = []
        slices = ','.join(':' for i in range(0, dim))
        for v in list(field_coeffs.values()):
            field_types.append('double [{slices}]'.format(slices=slices))

        field_types_str = ', '.join(i for i in field_types)
        field_types_str = ', {}'.format(field_types_str)
        # ...

    else:
        field_coeffs_str = ''
        eval_field_str = ''
        field_value_str = ''
        field_types_str = ''

    # ...

    # ... compute indentation
    tab_base = tab
    for i in range(0, 3 * dim):
        tab += ' ' * 4
    # ...

    # ... print test functions
    d_test_basis = construct_test_functions(nderiv, dim)
    test_names = [i.name for i in expr.free_symbols if is_test_function(i)]
    test_names.sort()

    lines = []
    for a in test_names:
        if a == 'Ni':
            basis = ' * '.join(d_test_basis[k, 0] for k in range(1, dim + 1))
            line = 'Ni = {basis}'.format(basis=basis)
        else:
            deriv = a.split('_')[-1]
            nx = _count_letter(deriv, 'x')
            ny = _count_letter(deriv, 'y')
            nz = _count_letter(deriv, 'z')
            basis = ' * '.join(d_test_basis[k, d]
                               for k, d in zip(range(1, dim +
                                                     1), [nx, ny, nz]))
            line = 'Ni_{deriv} = {basis}'.format(deriv=deriv, basis=basis)
        lines.append(tab + line)
    test_function_str = '\n'.join(l for l in lines)
    # ...

    # ... print trial functions
    d_trial_basis = construct_trial_functions(nderiv, dim)
    trial_names = [i.name for i in expr.free_symbols if is_trial_function(i)]
    trial_names.sort()

    lines = []
    for a in trial_names:
        if a == 'Nj':
            basis = ' * '.join(d_trial_basis[k, 0] for k in range(1, dim + 1))
            line = 'Nj = {basis}'.format(basis=basis)
        else:
            deriv = a.split('_')[-1]
            nx = _count_letter(deriv, 'x')
            ny = _count_letter(deriv, 'y')
            nz = _count_letter(deriv, 'z')
            basis = ' * '.join(d_trial_basis[k, d]
                               for k, d in zip(range(1, dim +
                                                     1), [nx, ny, nz]))
            line = 'Nj_{deriv} = {basis}'.format(deriv=deriv, basis=basis)
        lines.append(tab + line)
    trial_function_str = '\n'.join(l for l in lines)
    # ...

    # ...
    tab = tab_base
    # ...

    # ...
    if isinstance(V, VectorFemSpace):
        if V.is_block:
            n_components = len(V.spaces)

            # ... - initializing element matrices
            #     - define arguments
            lines = []
            mat_args = []
            slices = ','.join(':' for i in range(0, 2 * dim))
            for i in range(0, n_components):
                for j in range(0, n_components):
                    mat = 'mat_{i}{j}'.format(i=i, j=j)
                    mat_args.append(mat)

                    line = '{mat}[{slices}] = 0.0'.format(mat=mat,
                                                          slices=slices)
                    line = tab + line

                    lines.append(line)

            mat_args_str = ', '.join(mat for mat in mat_args)
            mat_init_str = '\n'.join(line for line in lines)
            # ...

            # ... update identation to be inside the loop
            for i in range(0, 2 * dim):
                tab += ' ' * 4

            tab_base = tab
            # ...

            # ... initializing accumulation variables
            lines = []
            for i in range(0, n_components):
                for j in range(0, n_components):
                    line = 'v_{i}{j} = 0.0'.format(i=i, j=j)
                    line = tab + line

                    lines.append(line)

            accum_init_str = '\n'.join(line for line in lines)
            # ...

            # .. update indentation
            for i in range(0, dim):
                tab += ' ' * 4
            # ...

            # ... accumulation contributions
            lines = []
            for i in range(0, n_components):
                for j in range(0, n_components):
                    line = 'v_{i}{j} += ({__WEAK_FORM__}) * wvol'
                    e = _convert_int_to_float(expr[i, j].evalf())
                    # we call evalf to avoid having fortran doing the evaluation of rational
                    # division
                    line = line.format(i=i, j=j, __WEAK_FORM__=e)
                    line = tab + line

                    lines.append(line)

            accum_str = '\n'.join(line for line in lines)
            # ...

            # ... assign accumulated values to element matrix
            if dim == 1:
                e_pattern = 'mat_{i}{j}[il_1, p1 + jl_1 - il_1] = v_{i}{j}'
            elif dim == 2:
                e_pattern = 'mat_{i}{j}[il_1, il_2, p1 + jl_1 - il_1, p2 + jl_2 - il_2] = v_{i}{j}'
            elif dim == 3:
                e_pattern = 'mat_{i}{j}[il_1, il_2, il_3, p1 + jl_1 - il_1, p2 + jl_2 - il_2, p3 + jl_3 - il_3] = v_{i}{j}'
            else:
                raise NotImplementedError('only 1d, 2d and 3d are available')

            tab = tab_base
            lines = []
            for i in range(0, n_components):
                for j in range(0, n_components):
                    line = e_pattern.format(i=i, j=j)
                    line = tab + line

                    lines.append(line)

            accum_assign_str = '\n'.join(line for line in lines)
            # ...

            code = template.format(__KERNEL_NAME__=name,
                                   __MAT_ARGS__=mat_args_str,
                                   __FIELD_COEFFS__=field_coeffs_str,
                                   __FIELD_EVALUATION__=eval_field_str,
                                   __MAT_INIT__=mat_init_str,
                                   __ACCUM_INIT__=accum_init_str,
                                   __FIELD_VALUE__=field_value_str,
                                   __TEST_FUNCTION__=test_function_str,
                                   __TRIAL_FUNCTION__=trial_function_str,
                                   __ACCUM__=accum_str,
                                   __ACCUM_ASSIGN__=accum_assign_str,
                                   __ARGS__=args)

        else:
            raise NotImplementedError(
                'We only treat the case of a block space, for '
                'which all components have are identical.')

    else:
        e = _convert_int_to_float(expr.evalf())
        # we call evalf to avoid having fortran doing the evaluation of rational
        # division
        code = template.format(__KERNEL_NAME__=name,
                               __FIELD_COEFFS__=field_coeffs_str,
                               __FIELD_EVALUATION__=eval_field_str,
                               __FIELD_VALUE__=field_value_str,
                               __TEST_FUNCTION__=test_function_str,
                               __TRIAL_FUNCTION__=trial_function_str,
                               __WEAK_FORM__=e,
                               __ARGS__=args)

    # ...

#    print('--------------')
#    print(code)
#    print('--------------')

# ...
    if context:
        from pyccel.epyccel import ContextPyccel

        if isinstance(context, ContextPyccel):
            context = [context]
        elif isinstance(context, (list, tuple)):
            for i in context:
                assert (isinstance(i, ContextPyccel))
        else:
            raise TypeError(
                'Expecting a ContextPyccel or list/tuple of ContextPyccel')

        # append functions to the namespace
        for c in context:
            for k, v in list(c.functions.items()):
                namespace[k] = v[0]
    # ...

    # ...
    exec(code, namespace)
    kernel = namespace[name]
    # ...

    # ... export the python code of the module
    if export_pyfile:
        write_code(name, code, ext='py', folder='.pyccel')
    # ...

    # ...
    if backend == 'fortran':
        #        try:
        # import epyccel function
        from pyccel.epyccel import epyccel

        #  ... define a header to specify the arguments types for kernel
        try:
            template = eval('template_header_{dim}d_{pattern}'.format(
                dim=dim, pattern=pattern))
        except:
            raise ValueError('Could not find the corresponding template')
        # ...

        # ...
        if isinstance(V, VectorFemSpace):
            if V.is_block:
                # ... declare element matrices dtypes
                mat_types = []
                for i in range(0, n_components):
                    for j in range(0, n_components):
                        if dim == 1:
                            mat_types.append('double [:,:]')
                        elif dim == 2:
                            mat_types.append('double [:,:,:,:]')
                        elif dim == 3:
                            mat_types.append('double [:,:,:,:,:,:]')
                        else:
                            raise NotImplementedError(
                                'only 1d, 2d and 3d are available')

                mat_types_str = ', '.join(mat for mat in mat_types)
                # ...

                header = template.format(__KERNEL_NAME__=name,
                                         __MAT_TYPES__=mat_types_str,
                                         __FIELD_TYPES__=field_types_str,
                                         __TYPES__=dtypes)

            else:
                raise NotImplementedError(
                    'We only treat the case of a block space, for '
                    'which all components have are identical.')

        else:
            header = template.format(__KERNEL_NAME__=name,
                                     __FIELD_TYPES__=field_types_str,
                                     __TYPES__=dtypes)
        # ...

        # compile the kernel
        kernel = epyccel(code, header, name=name, context=context)


#        except:
#            print('> COULD NOT CONVERT KERNEL TO FORTRAN')
#            print('  THE PYTHON BACKEND WILL BE USED')
# ...

    return kernel
Exemple #15
0
def compile_symbol(name,
                   expr,
                   V,
                   namespace=globals(),
                   verbose=False,
                   d_constants={},
                   d_args={},
                   context=None,
                   backend='python',
                   export_pyfile=True):
    """returns a lmabdified function for the GLT symbol."""

    from spl.fem.vector import VectorFemSpace

    # ... parametric dimension
    dim = V.pdim
    # ...

    # ...
    if verbose:
        print('> input     := {0}'.format(expr))
    # ...

    # ...
    fields = [i for i in expr.free_symbols if isinstance(i, Field)]
    if verbose:
        print('> Fields = ', fields)
    # ...

    # ...
    expr = glt_symbol(expr, space=V, evaluate=True)
    if verbose:
        print('> weak form := {0}'.format(expr))
    # ...

    # ... contants
    #     for each argument, we compute its datatype (needed for Pyccel)
    #     case of Numeric Native Python types
    #     this means that a has a given value (1, 1.0 etc)
    if d_constants:
        for k, a in list(d_constants.items()):
            if not isinstance(a, Number):
                raise TypeError('Expecting a Python Numeric object')

        # update the glt symbol using the given arguments
        _d = {}
        for k, v in list(d_constants.items()):
            if isinstance(k, str):
                _d[Constant(k)] = v
            else:
                _d[k] = v

        expr = expr.subs(_d)

#    print(expr)
#    import sys; sys.exit(0)

    args = ''
    dtypes = ''
    if d_args:
        # ... additional arguments
        #     for each argument, we compute its datatype (needed for Pyccel)
        for k, a in list(d_args.items()):
            # otherwise it can be a string, that specifies its type
            if not isinstance(a, str):
                raise TypeError('Expecting a string')

            if not a in ['int', 'double', 'complex']:
                raise TypeError('Wrong type for {} :: {}'.format(k, a))

        # we convert the dictionaries to OrderedDict, to avoid wrong ordering
        d_args = OrderedDict(sorted(list(d_args.items())))

        names = []
        dtypes = []
        for n, d in list(d_args.items()):
            names.append(n)
            dtypes.append(d)

        args = ', '.join('{}'.format(a) for a in names)
        dtypes = ', '.join('{}'.format(a) for a in dtypes)

        args = ', {}'.format(args)
        dtypes = ', {}'.format(dtypes)

        # TODO check what are the free_symbols of expr,
        #      to make sure the final code will compile
        #      the remaining free symbols must be the trial/test basis functions,
        #      and the coordinates
    # ...

    # ...
    if isinstance(V, VectorFemSpace) and not (V.is_block):
        raise NotImplementedError(
            'We only treat the case of a block space, for '
            'which all components have are identical.')
    # ...

    # ...
    pattern = 'scalar'
    if isinstance(V, VectorFemSpace):
        if V.is_block:
            pattern = 'block'

        else:
            raise NotImplementedError(
                'We only treat the case of a block space, for '
                'which all components have are identical.')

    # ...

    # ...
    template_str = 'symbol_{dim}d_{pattern}'.format(dim=dim, pattern=pattern)
    try:
        template = eval(template_str)
    except:
        raise ValueError('Could not find the corresponding template {}'.format(
            template_str))
    # ...

    # ...
    if fields:
        raise NotImplementedError('TODO')
    else:
        field_coeffs_str = ''
        eval_field_str = ''
        field_value_str = ''
        field_types_str = ''
    # ...

    # ...
    if isinstance(V, VectorFemSpace):
        if V.is_block:
            n_components = len(V.spaces)

            # ... identation (def function body)
            tab = ' ' * 4
            # ...

            # ... update identation to be inside the loop
            for i in range(0, dim):
                tab += ' ' * 4

            tab_base = tab
            # ...

            # ...
            lines = []
            indices = ','.join('i{}'.format(i) for i in range(1, dim + 1))
            for i in range(0, n_components):
                for j in range(0, n_components):
                    s_ij = 'symbol[{i},{j},{indices}]'.format(i=i,
                                                              j=j,
                                                              indices=indices)
                    e_ij = _convert_int_to_float(expr.expr[i, j])
                    # we call evalf to avoid having fortran doing the evaluation of rational
                    # division
                    line = '{s_ij} = {e_ij}'.format(s_ij=s_ij,
                                                    e_ij=e_ij.evalf())
                    line = tab + line

                    lines.append(line)

            symbol_expr = '\n'.join(line for line in lines)
            # ...

            code = template.format(__SYMBOL_NAME__=name,
                                   __SYMBOL_EXPR__=symbol_expr,
                                   __FIELD_COEFFS__=field_coeffs_str,
                                   __FIELD_EVALUATION__=eval_field_str,
                                   __FIELD_VALUE__=field_value_str,
                                   __ARGS__=args)

        else:
            raise NotImplementedError('TODO')

    else:
        # we call evalf to avoid having fortran doing the evaluation of rational
        # division
        e = _convert_int_to_float(expr.expr)
        code = template.format(__SYMBOL_NAME__=name,
                               __SYMBOL_EXPR__=e.evalf(),
                               __FIELD_COEFFS__=field_coeffs_str,
                               __FIELD_EVALUATION__=eval_field_str,
                               __FIELD_VALUE__=field_value_str,
                               __ARGS__=args)
    # ...

    # ... export the python code of the module
    if export_pyfile:
        write_code(name, code, ext='py', folder='.pyccel')
    # ...

    # ...
    if context:
        from pyccel.epyccel import ContextPyccel

        if isinstance(context, ContextPyccel):
            context = [context]
        elif isinstance(context, (list, tuple)):
            for i in context:
                assert (isinstance(i, ContextPyccel))
        else:
            raise TypeError(
                'Expecting a ContextPyccel or list/tuple of ContextPyccel')

        # append functions to the namespace
        for c in context:
            for k, v in list(c.functions.items()):
                namespace[k] = v[0]
    # ...
#    print(code)
#    import sys; sys.exit(0)

# ...
    exec(code, namespace)
    kernel = namespace[name]
    # ...

    # ...
    if backend == 'fortran':
        #        try:
        # import epyccel function
        from pyccel.epyccel import epyccel

        #  ... define a header to specify the arguments types for kernel
        template_str = 'symbol_header_{dim}d_{pattern}'.format(dim=dim,
                                                               pattern=pattern)
        try:
            template = eval(template_str)
        except:
            raise ValueError(
                'Could not find the corresponding template {}'.format(
                    template_str))
        # ...

        # ...
        header = template.format(__SYMBOL_NAME__=name,
                                 __FIELD_TYPES__=field_types_str,
                                 __TYPES__=dtypes)
        # ...

        # compile the kernel
        kernel = epyccel(code, header, name=name, context=context)


#        except:
#            print('> COULD NOT CONVERT KERNEL TO FORTRAN')
#            print('  THE PYTHON BACKEND WILL BE USED')
# ...

    return kernel