Exemple #1
0
    def _entity_support_dofs(self):
        esd = {}
        for entity_dim in self.cell.sub_entities.keys():
            beta = self.get_indices()
            zeta = self.get_value_indices()

            entity_cell = self.cell.construct_subelement(entity_dim)
            quad = make_quadrature(entity_cell,
                                   (2 * numpy.array(self.degree)).tolist())

            eps = 1.e-8  # Is this a safe value?

            result = {}
            for f in self.entity_dofs()[entity_dim].keys():
                # Tabulate basis functions on the facet
                vals, = self.basis_evaluation(0,
                                              quad.point_set,
                                              entity=(entity_dim, f)).values()
                # Integrate the square of the basis functions on the facet.
                ints = gem.IndexSum(
                    gem.Product(
                        gem.IndexSum(
                            gem.Product(gem.Indexed(vals, beta + zeta),
                                        gem.Indexed(vals, beta + zeta)), zeta),
                        quad.weight_expression), quad.point_set.indices)
                evaluation, = evaluate([gem.ComponentTensor(ints, beta)])
                ints = evaluation.arr.flatten()
                assert evaluation.fids == ()
                result[f] = [dof for dof, i in enumerate(ints) if i > eps]

            esd[entity_dim] = result
        return esd
Exemple #2
0
def test_refactorise():
    f = gem.Variable('f', (3,))
    u = gem.Variable('u', (3,))
    v = gem.Variable('v', ())

    i = gem.Index()
    f_i = gem.Indexed(f, (i,))
    u_i = gem.Indexed(u, (i,))

    def classify(atomics_set, expression):
        if expression in atomics_set:
            return ATOMIC

        for node in traversal([expression]):
            if node in atomics_set:
                return COMPOUND

        return OTHER
    classifier = partial(classify, {u_i, v})

    # \sum_i 5*(2*u_i + -1*v)*(u_i + v*f)
    expr = gem.IndexSum(
        gem.Product(
            gem.Literal(5),
            gem.Product(
                gem.Sum(gem.Product(gem.Literal(2), u_i),
                        gem.Product(gem.Literal(-1), v)),
                gem.Sum(u_i, gem.Product(v, f_i))
            )
        ),
        (i,)
    )

    expected = [
        Monomial((i,),
                 (u_i, u_i),
                 gem.Literal(10)),
        Monomial((i,),
                 (u_i, v),
                 gem.Product(gem.Literal(5),
                             gem.Sum(gem.Product(f_i, gem.Literal(2)),
                                     gem.Literal(-1)))),
        Monomial((),
                 (v, v),
                 gem.Product(gem.Literal(5),
                             gem.IndexSum(gem.Product(f_i, gem.Literal(-1)),
                                          (i,)))),
    ]

    actual, = collect_monomials([expr], classifier)
    assert expected == list(actual)
Exemple #3
0
def translate_coefficient(terminal, mt, ctx):
    vec = ctx.coefficient(terminal, mt.restriction)

    if terminal.ufl_element().family() == 'Real':
        assert mt.local_derivatives == 0
        return vec

    element = ctx.create_element(terminal.ufl_element())

    # Collect FInAT tabulation for all entities
    per_derivative = collections.defaultdict(list)
    for entity_id in ctx.entity_ids:
        finat_dict = ctx.basis_evaluation(element, mt.local_derivatives, entity_id)
        for alpha, table in finat_dict.items():
            # Filter out irrelevant derivatives
            if sum(alpha) == mt.local_derivatives:
                # A numerical hack that FFC used to apply on FIAT
                # tables still lives on after ditching FFC and
                # switching to FInAT.
                table = ffc_rounding(table, ctx.epsilon)
                per_derivative[alpha].append(table)

    # Merge entity tabulations for each derivative
    if len(ctx.entity_ids) == 1:
        def take_singleton(xs):
            x, = xs  # asserts singleton
            return x
        per_derivative = {alpha: take_singleton(tables)
                          for alpha, tables in per_derivative.items()}
    else:
        f = ctx.entity_number(mt.restriction)
        per_derivative = {alpha: gem.select_expression(tables, f)
                          for alpha, tables in per_derivative.items()}

    # Coefficient evaluation
    ctx.index_cache.setdefault(terminal.ufl_element(), element.get_indices())
    beta = ctx.index_cache[terminal.ufl_element()]
    zeta = element.get_value_indices()
    vec_beta, = gem.optimise.remove_componenttensors([gem.Indexed(vec, beta)])
    value_dict = {}
    for alpha, table in per_derivative.items():
        table_qi = gem.Indexed(table, beta + zeta)
        summands = []
        for var, expr in unconcatenate([(vec_beta, table_qi)], ctx.index_cache):
            value = gem.IndexSum(gem.Product(expr, var), var.index_ordering())
            summands.append(gem.optimise.contraction(value))
        optimised_value = gem.optimise.make_sum(summands)
        value_dict[alpha] = gem.ComponentTensor(optimised_value, zeta)

    # Change from FIAT to UFL arrangement
    result = fiat_to_ufl(value_dict, mt.local_derivatives)
    assert result.shape == mt.expr.ufl_shape
    assert set(result.free_indices) <= set(ctx.point_indices)

    # Detect Jacobian of affine cells
    if not result.free_indices and all(numpy.count_nonzero(node.array) <= 2
                                       for node in traversal((result,))
                                       if isinstance(node, gem.Literal)):
        result = gem.optimise.aggressive_unroll(result)
    return result
Exemple #4
0
    def dual_evaluation(self, fn):
        tQ, x = self.dual_basis
        expr = fn(x)
        # Apply targeted sum factorisation and delta elimination to
        # the expression
        sum_indices, factors = delta_elimination(*traverse_product(expr))
        expr = sum_factorise(sum_indices, factors)
        # NOTE: any shape indices in the expression are because the
        # expression is tensor valued.
        assert expr.shape == self.value_shape

        scalar_i = self.base_element.get_indices()
        scalar_vi = self.base_element.get_value_indices()
        tensor_i = tuple(gem.Index(extent=d) for d in self._shape)
        tensor_vi = tuple(gem.Index(extent=d) for d in self._shape)

        if self._transpose:
            index_ordering = tensor_i + scalar_i + tensor_vi + scalar_vi
        else:
            index_ordering = scalar_i + tensor_i + tensor_vi + scalar_vi

        tQi = tQ[index_ordering]
        expri = expr[tensor_i + scalar_vi]
        evaluation = gem.IndexSum(tQi * expri, x.indices + scalar_vi + tensor_i)
        # This doesn't work perfectly, the resulting code doesn't have
        # a minimal memory footprint, although the operation count
        # does appear to be minimal.
        evaluation = gem.optimise.contraction(evaluation)
        return evaluation, scalar_i + tensor_vi
Exemple #5
0
 def matvec(table):
     i, j = gem.indices(2)
     value_indices = self.get_value_indices()
     table = gem.Indexed(table, (j, ) + value_indices)
     val = gem.ComponentTensor(gem.IndexSum(M[i, j] * table, (j, )),
                               (i, ) + value_indices)
     # Eliminate zeros
     return gem.optimise.aggressive_unroll(val)
Exemple #6
0
def point_evaluation_ciarlet(fiat_element, order, refcoords, entity):
    # Coordinates on the reference entity (SymPy)
    esd, = refcoords.shape
    Xi = sp.symbols('X Y Z')[:esd]

    # Coordinates on the reference cell
    cell = fiat_element.get_reference_element()
    X = cell.get_entity_transform(*entity)(Xi)

    # Evaluate expansion set at SymPy point
    poly_set = fiat_element.get_nodal_basis()
    degree = poly_set.get_embedded_degree()
    base_values = poly_set.get_expansion_set().tabulate(degree, [X])
    m = len(base_values)
    assert base_values.shape == (m, 1)
    base_values_sympy = np.array(list(base_values.flat))

    # Find constant polynomials
    def is_const(expr):
        try:
            float(expr)
            return True
        except TypeError:
            return False

    const_mask = np.array(list(map(is_const, base_values_sympy)))

    # Convert SymPy expression to GEM
    mapper = gem.node.Memoizer(sympy2gem)
    mapper.bindings = {
        s: gem.Indexed(refcoords, (i, ))
        for i, s in enumerate(Xi)
    }
    base_values = gem.ListTensor(list(map(mapper, base_values.flat)))

    # Populate result dict, creating precomputed coefficient
    # matrices for each derivative tuple.
    result = {}
    for i in range(order + 1):
        for alpha in mis(cell.get_spatial_dimension(), i):
            D = form_matrix_product(poly_set.get_dmats(), alpha)
            table = np.dot(poly_set.get_coeffs(), np.transpose(D))
            assert table.shape[-1] == m
            zerocols = np.isclose(
                abs(table).max(axis=tuple(range(table.ndim - 1))), 0.0)
            if all(np.logical_or(const_mask, zerocols)):
                # Casting is safe by assertion of is_const
                vals = base_values_sympy[const_mask].astype(np.float64)
                result[alpha] = gem.Literal(table[..., const_mask].dot(vals))
            else:
                beta = tuple(gem.Index() for s in table.shape[:-1])
                k = gem.Index()
                result[alpha] = gem.ComponentTensor(
                    gem.IndexSum(
                        gem.Product(
                            gem.Indexed(gem.Literal(table), beta + (k, )),
                            gem.Indexed(base_values, (k, ))), (k, )), beta)
    return result
Exemple #7
0
def entity_support_dofs(elem, entity_dim):
    """Return the map of entity id to the degrees of freedom for which
    the corresponding basis functions take non-zero values.

    :arg elem: FInAT finite element
    :arg entity_dim: Dimension of the cell subentity.
    """
    if not hasattr(elem, "_entity_support_dofs"):
        elem._entity_support_dofs = {}
    cache = elem._entity_support_dofs
    try:
        return cache[entity_dim]
    except KeyError:
        pass

    beta = elem.get_indices()
    zeta = elem.get_value_indices()

    entity_cell = elem.cell.construct_subelement(entity_dim)
    quad = make_quadrature(entity_cell,
                           (2 * numpy.array(elem.degree)).tolist())

    eps = 1.e-8  # Is this a safe value?

    result = {}
    for f in elem.entity_dofs()[entity_dim].keys():
        # Tabulate basis functions on the facet
        vals, = itervalues(
            elem.basis_evaluation(0, quad.point_set, entity=(entity_dim, f)))
        # Integrate the square of the basis functions on the facet.
        ints = gem.IndexSum(
            gem.Product(
                gem.IndexSum(
                    gem.Product(gem.Indexed(vals, beta + zeta),
                                gem.Indexed(vals, beta + zeta)), zeta),
                quad.weight_expression), quad.point_set.indices)
        ints = aggressive_unroll(gem.ComponentTensor(ints,
                                                     beta)).array.flatten()
        result[f] = [dof for dof, i in enumerate(ints) if i > eps]

    cache[entity_dim] = result
    return result
Exemple #8
0
def test_pickle_gem(protocol):
    f = gem.VariableIndex(gem.Indexed(gem.Variable('facet', (2, )), (1, )))
    q = gem.Index()
    r = gem.Index()
    _1 = gem.Indexed(gem.Literal(numpy.random.rand(3, 6, 8)), (f, q, r))
    _2 = gem.Indexed(
        gem.view(gem.Variable('w', (None, None)), slice(8), slice(1)), (r, 0))
    expr = gem.ComponentTensor(gem.IndexSum(gem.Product(_1, _2), (r, )), (q, ))

    unpickled = pickle.loads(pickle.dumps(expr, protocol))
    assert repr(expr) == repr(unpickled)
Exemple #9
0
def Integrals(expressions, quadrature_multiindex, argument_multiindices,
              parameters):
    # Concatenate
    expressions = concatenate(expressions)

    # Unroll
    max_extent = parameters["unroll_indexsum"]
    if max_extent:

        def predicate(index):
            return index.extent <= max_extent

        expressions = unroll_indexsum(expressions, predicate=predicate)

    # Refactorise
    def classify(quadrature_indices, expression):
        if not quadrature_indices.intersection(expression.free_indices):
            return OTHER
        elif isinstance(expression, gem.Indexed) and isinstance(
                expression.children[0], gem.Literal):
            return ATOMIC
        else:
            return COMPOUND

    classifier = partial(classify, set(quadrature_multiindex))

    result = []
    for expr, monomial_sum in zip(expressions,
                                  collect_monomials(expressions, classifier)):
        # Select quadrature indices that are present
        quadrature_indices = set(index for index in quadrature_multiindex
                                 if index in expr.free_indices)

        products = []
        for sum_indices, factors, rest in monomial_sum:
            # Collapse quadrature literals for each monomial
            if factors or quadrature_indices:
                replacement = einsum(remove_componenttensors(factors),
                                     quadrature_indices)
            else:
                replacement = gem.Literal(1)
            # Rebuild expression
            products.append(
                gem.IndexSum(gem.Product(replacement, rest), sum_indices))
        result.append(reduce(gem.Sum, products, gem.Zero()))
    return result
Exemple #10
0
    def dual_evaluation(self, fn):
        '''Get a GEM expression for performing the dual basis evaluation at
        the nodes of the reference element. Currently only works for flat
        elements: tensor elements are implemented in
        :class:`TensorFiniteElement`.

        :param fn: Callable representing the function to dual evaluate.
                   Callable should take in an :class:`AbstractPointSet` and
                   return a GEM expression for evaluation of the function at
                   those points.
        :returns: A tuple ``(dual_evaluation_gem_expression, basis_indices)``
                  where the given ``basis_indices`` are those needed to form a
                  return expression for the code which is compiled from
                  ``dual_evaluation_gem_expression`` (alongside any argument
                  multiindices already encoded within ``fn``)
        '''
        Q, x = self.dual_basis

        expr = fn(x)
        # Apply targeted sum factorisation and delta elimination to
        # the expression
        sum_indices, factors = delta_elimination(*traverse_product(expr))
        expr = sum_factorise(sum_indices, factors)
        # NOTE: any shape indices in the expression are because the
        # expression is tensor valued.
        assert expr.shape == Q.shape[len(Q.shape) - len(expr.shape):]
        shape_indices = gem.indices(len(expr.shape))
        basis_indices = gem.indices(len(Q.shape) - len(expr.shape))
        Qi = Q[basis_indices + shape_indices]
        expri = expr[shape_indices]
        evaluation = gem.IndexSum(Qi * expri, x.indices + shape_indices)
        # Now we want to factorise over the new contraction with x,
        # ignoring any shape indices to avoid hitting the sum-
        # factorisation index limit (this is a bit of a hack).
        # Really need to do a more targeted job here.
        evaluation = gem.optimise.contraction(evaluation, shape_indices)
        return evaluation, basis_indices
Exemple #11
0
def dg_injection_kernel(Vf, Vc, ncell):
    from firedrake import Tensor, AssembledVector, TestFunction, TrialFunction
    from firedrake.slate.slac import compile_expression
    macro_builder = MacroKernelBuilder(ScalarType_c, ncell)
    f = ufl.Coefficient(Vf)
    macro_builder.set_coefficients([f])
    macro_builder.set_coordinates(Vf.mesh())

    Vfe = create_element(Vf.ufl_element())
    macro_quadrature_rule = make_quadrature(
        Vfe.cell, estimate_total_polynomial_degree(ufl.inner(f, f)))
    index_cache = {}
    parameters = default_parameters()
    integration_dim, entity_ids = lower_integral_type(Vfe.cell, "cell")
    macro_cfg = dict(interface=macro_builder,
                     ufl_cell=Vf.ufl_cell(),
                     precision=parameters["precision"],
                     integration_dim=integration_dim,
                     entity_ids=entity_ids,
                     index_cache=index_cache,
                     quadrature_rule=macro_quadrature_rule)

    fexpr, = fem.compile_ufl(f, **macro_cfg)
    X = ufl.SpatialCoordinate(Vf.mesh())
    C_a, = fem.compile_ufl(X, **macro_cfg)
    detJ = ufl_utils.preprocess_expression(
        abs(ufl.JacobianDeterminant(f.ufl_domain())))
    macro_detJ, = fem.compile_ufl(detJ, **macro_cfg)

    Vce = create_element(Vc.ufl_element())

    coarse_builder = firedrake_interface.KernelBuilder("cell", "otherwise", 0,
                                                       ScalarType_c)
    coarse_builder.set_coordinates(Vc.mesh())
    argument_multiindices = (Vce.get_indices(), )
    argument_multiindex, = argument_multiindices
    return_variable, = coarse_builder.set_arguments((ufl.TestFunction(Vc), ),
                                                    argument_multiindices)

    integration_dim, entity_ids = lower_integral_type(Vce.cell, "cell")
    # Midpoint quadrature for jacobian on coarse cell.
    quadrature_rule = make_quadrature(Vce.cell, 0)

    coarse_cfg = dict(interface=coarse_builder,
                      ufl_cell=Vc.ufl_cell(),
                      precision=parameters["precision"],
                      integration_dim=integration_dim,
                      entity_ids=entity_ids,
                      index_cache=index_cache,
                      quadrature_rule=quadrature_rule)

    X = ufl.SpatialCoordinate(Vc.mesh())
    K = ufl_utils.preprocess_expression(ufl.JacobianInverse(Vc.mesh()))
    C_0, = fem.compile_ufl(X, **coarse_cfg)
    K, = fem.compile_ufl(K, **coarse_cfg)

    i = gem.Index()
    j = gem.Index()

    C_0 = gem.Indexed(C_0, (j, ))
    C_0 = gem.index_sum(C_0, quadrature_rule.point_set.indices)
    C_a = gem.Indexed(C_a, (j, ))
    X_a = gem.Sum(C_0, gem.Product(gem.Literal(-1), C_a))

    K_ij = gem.Indexed(K, (i, j))
    K_ij = gem.index_sum(K_ij, quadrature_rule.point_set.indices)
    X_a = gem.index_sum(gem.Product(K_ij, X_a), (j, ))
    C_0, = quadrature_rule.point_set.points
    C_0 = gem.Indexed(gem.Literal(C_0), (i, ))
    # fine quad points in coarse reference space.
    X_a = gem.Sum(C_0, gem.Product(gem.Literal(-1), X_a))
    X_a = gem.ComponentTensor(X_a, (i, ))

    # Coarse basis function evaluated at fine quadrature points
    phi_c = fem.fiat_to_ufl(
        Vce.point_evaluation(0, X_a, (Vce.cell.get_dimension(), 0)), 0)

    tensor_indices = tuple(gem.Index(extent=d) for d in f.ufl_shape)

    phi_c = gem.Indexed(phi_c, argument_multiindex + tensor_indices)
    fexpr = gem.Indexed(fexpr, tensor_indices)
    quadrature_weight = macro_quadrature_rule.weight_expression
    expr = gem.Product(gem.IndexSum(gem.Product(phi_c, fexpr), tensor_indices),
                       gem.Product(macro_detJ, quadrature_weight))

    quadrature_indices = macro_builder.indices + macro_quadrature_rule.point_set.indices

    reps = spectral.Integrals([expr], quadrature_indices,
                              argument_multiindices, parameters)
    assignments = spectral.flatten([(return_variable, reps)], index_cache)
    return_variables, expressions = zip(*assignments)
    expressions = impero_utils.preprocess_gem(expressions,
                                              **spectral.finalise_options)
    assignments = list(zip(return_variables, expressions))
    impero_c = impero_utils.compile_gem(assignments,
                                        quadrature_indices +
                                        argument_multiindex,
                                        remove_zeros=True)

    index_names = []

    def name_index(index, name):
        index_names.append((index, name))
        if index in index_cache:
            for multiindex, suffix in zip(index_cache[index],
                                          string.ascii_lowercase):
                name_multiindex(multiindex, name + suffix)

    def name_multiindex(multiindex, name):
        if len(multiindex) == 1:
            name_index(multiindex[0], name)
        else:
            for i, index in enumerate(multiindex):
                name_index(index, name + str(i))

    name_multiindex(quadrature_indices, 'ip')
    for multiindex, name in zip(argument_multiindices, ['j', 'k']):
        name_multiindex(multiindex, name)

    index_names.extend(zip(macro_builder.indices, ["entity"]))
    body = generate_coffee(impero_c, index_names, parameters["precision"],
                           ScalarType_c)

    retarg = ast.Decl(ScalarType_c,
                      ast.Symbol("R", rank=(Vce.space_dimension(), )))
    local_tensor = coarse_builder.local_tensor
    local_tensor.init = ast.ArrayInit(
        numpy.zeros(Vce.space_dimension(), dtype=ScalarType_c))
    body.children.insert(0, local_tensor)
    args = [retarg] + macro_builder.kernel_args + [
        macro_builder.coordinates_arg, coarse_builder.coordinates_arg
    ]

    # Now we have the kernel that computes <f, phi_c>dx_c
    # So now we need to hit it with the inverse mass matrix on dx_c

    u = TrialFunction(Vc)
    v = TestFunction(Vc)
    expr = Tensor(ufl.inner(u, v) * ufl.dx).inv * AssembledVector(
        ufl.Coefficient(Vc))
    Ainv, = compile_expression(expr)
    Ainv = Ainv.kinfo.kernel
    A = ast.Symbol(local_tensor.sym.symbol)
    R = ast.Symbol("R")
    body.children.append(
        ast.FunCall(Ainv.name, R, coarse_builder.coordinates_arg.sym, A))
    from coffee.base import Node
    assert isinstance(Ainv._code, Node)
    return op2.Kernel(ast.Node([
        Ainv._code,
        ast.FunDecl("void",
                    "pyop2_kernel_injection_dg",
                    args,
                    body,
                    pred=["static", "inline"])
    ]),
                      name="pyop2_kernel_injection_dg",
                      cpp=True,
                      include_dirs=Ainv._include_dirs,
                      headers=Ainv._headers)
 def index_sum(self, o, summand, indices):
     index, = indices
     indices = gem.indices(len(summand.shape))
     return gem.ComponentTensor(
         gem.IndexSum(gem.Indexed(summand, indices), (index, )), indices)