Exemple #1
0
def carv(I, nr, nc):

    [n, m, d] = np.shape(I)
    T = np.zeros(np.array([nr + 1, nc + 1]))
    Ic = np.zeros(np.array([n - nr, m - nc, 3]))
    table = np.empty((nr + 1, nc + 1), dtype=np.ndarray)
    table[0, 0] = I
    track = T

    for i in range(0, nr + 1):
        for j in range(0, nc + 1):
            if (i == 0 and j == 0):
                T[i, j] = 0
            elif i == 0:
                e = genEngMap(table[i, j - 1])
                [Mx, Tbx] = cumMinEngVer(e)
                [Ix, Ex] = rmVerSeam(table[i, j - 1], Mx, Tbx)
                table[i, j] = Ix
                T[i, j] = T[i, j - 1] + Ex
                track[i, j] = -1
            elif j == 0:
                e = genEngMap(table[i - 1, j])
                [My, Tby] = cumMinEngHor(e)
                [Iy, Ey] = rmHorSeam(table[i - 1, j], My, Tby)
                table[i, j] = Iy
                T[i, j] = T[i - 1, j] + Ey
                track[i, j] = 1
            else:
                e1 = genEngMap(table[i, j - 1])
                e2 = genEngMap(table[i - 1, j])
                [Mx, Tbx] = cumMinEngVer(e1)
                [My, Tby] = cumMinEngHor(e2)
                [Ix, Ex] = rmVerSeam(table[i, j - 1], Mx, Tbx)
                [Iy, Ey] = rmHorSeam(table[i - 1, j], My, Tby)
                if (T[i - 1, j] + Ey <= T[i, j - 1] + Ex):
                    table[i, j] = Iy
                    T[i, j] = T[i - 1, j] + Ey
                    track[i, j] = 1
                else:
                    table[i, j] = Ix
                    T[i, j] = T[i, j - 1] + Ex
                    track[i, j] = -1

    vid = []
    [r, c] = [nr, nc]

    while track[r, c] != 0:
        if track[r, c] == 1:
            vid.append(table[r, c])
            r = r - 1
        elif track[r, c] == -1:
            vid.append(table[r, c])
            c = c - 1
    vid.append(table[0, 0])
    vid.reverse()

    Ic = table[nr, nc]
    return Ic, T, vid
Exemple #2
0
def carv(I, nr, nc, I_label):
    # record=np.zeros(np.array([nr,nc]))
    # T=mincost(nr, nc, I, record)

    T = np.zeros(np.array([nr + 1, nc + 1]))
    # x_mesh, y_mesh=np.meshgrid(np.arange(nr), np.arange(nc))
    dict = {(0, 0): I}
    #res_list = []

    for i in range(0, nr + 1):
        print(i)
        for j in range(0, nc + 1):
            print(j)
            if (i == 0 and j == 0):
                T[i, j] = 0
            elif i == 0:
                emap = genEngMap(dict[(i, j - 1)], I_label)
                [Mx, Tbx] = cumMinEngVer(emap)
                [Ix, Ex, I_label] = rmVerSeam(dict[(i, j - 1)], Mx, Tbx,
                                              I_label)
                dict[(i, j)] = Ix
                T[i, j] = T[i, j - 1] + Ex
            elif j == 0:
                emap = genEngMap(dict[(i - 1, j)], I_label)
                [My, Tby] = cumMinEngHor(emap)
                [Iy, Ey, I_label] = rmHorSeam(dict[(i - 1, j)], My, Tby,
                                              I_label)
                dict[(i, j)] = Iy
                T[i, j] = T[i - 1, j] + Ey
            else:
                emap = genEngMap(dict[(i, j - 1)], I_label)
                emap2 = genEngMap(dict[(i - 1, j)], I_label)
                [Mx, Tbx] = cumMinEngVer(emap)
                [My, Tby] = cumMinEngHor(emap2)
                [Ix, Ex, I_label] = rmVerSeam(dict[(i, j - 1)], Mx, Tbx,
                                              I_label)
                [Iy, Ey, I_label] = rmHorSeam(dict[(i - 1, j)], My, Tby,
                                              I_label)
                if (T[i - 1, j] + Ey <= T[i, j - 1] + Ex):
                    dict[(i, j)] = Iy
                    T[i, j] = T[i - 1, j] + Ey
                else:
                    dict[(i, j)] = Ix
                    T[i, j] = T[i, j - 1] + Ex
            #res_list.append(dict[(i, j)])

    return dict[(i, j)], T  #, res_list
Exemple #3
0
def getTupleLeft(clone):
  dataEn = genEngMap(clone)
  Mx, Tbx = cumMinEngVer(dataEn)
  clone2, e = rmVerSeam(clone, Mx, Tbx)
  return clone2, e
Exemple #4
0
def getTupleUp(clone):
  dataEn = genEngMap(clone)
  My, Tby = cumMinEngHor(dataEn)
  clone2, e = rmHorSeam(clone, My, Tby)
  return clone2, e
Exemple #5
0
def do_the_actual_seam_carving(bounding_box):
    e = genEngMap(bounding_box)
    Mx, Tbx = cumMinEngVer(e)
    seam_to_be_removed = rmVerSeam(bounding_box, Mx, Tbx)
    return seam_to_be_removed
Exemple #6
0
def carv(I, nr, nc):
    res_list = []
    height, width, color = I.shape
    T = np.zeros((nr + 1, nc + 1))
    e = genEngMap(I)
    Ic = I
    Mx, Tbx = cumMinEngVer(e)
    My, Tby = cumMinEngHor(e)
    removed_c = 0
    removed_r = 0
    T[0][1] = np.amin(Mx[height - 1])
    My_transpose = np.transpose(My)
    T[1][0] = np.amin(My_transpose[height - 1])
    for i in range(nr + nc):

        if removed_c == nc:
            print("all columns removed")
            My, Tby = cumMinEngHor(e)
            Ic, E = rmHorSeam(Ic, My, Tby)
            res_list.append(Ic)
            e = genEngMap(Ic)
            removed_r += 1
        elif removed_r == nr:
            print("all rows removed")
            Mx, Tbx = cumMinEngVer(e)
            Ic, E = rmVerSeam(Ic, My, Tby)
            res_list.append(Ic)
            e = genEngMap(Ic)
            removed_c += 1
        elif T[removed_r][removed_c +
                          1] > T[removed_r +
                                 1][removed_c]:  # here is the problem
            print("removing row")
            My, Tby = cumMinEngHor(e)
            Ic, E = rmHorSeam(Ic, My, Tby)
            res_list.append(Ic)
            e = genEngMap(Ic)
            removed_r += 1
            Mx, Tbx = cumMinEngVer(e)
            My, Tby = cumMinEngHor(e)
            T[removed_r][removed_c + 1] = np.amin(Mx[height - 1 - removed_r])
            My_transpose = np.transpose(My)
            if (removed_r < nr):
                T[removed_r + 1][removed_c] = np.amin(My_transpose[width - 1 -
                                                                   removed_c])
        else:
            print("removing column")
            Mx, Tbx = cumMinEngVer(e)
            Ic, E = rmVerSeam(Ic, Mx, Tbx)
            res_list.append(Ic)
            e = genEngMap(Ic)
            removed_c += 1
            Mx, Tbx = cumMinEngVer(e)
            My, Tby = cumMinEngHor(e)
            if (removed_c < nc):
                T[removed_r][removed_c + 1] = np.amin(Mx[height - 1 -
                                                         removed_r])
            My_transpose = np.transpose(My)
            T[removed_r + 1][removed_c] = np.amin(My_transpose[width - 1 -
                                                               removed_c])

    return np.uint8(Ic), T
Exemple #7
0
def carv(I, nr, nc):
    res_list = []
    print I.shape
    height, width, color = I.shape
    T = np.zeros((nr + 1, nc + 1))
    e = genEngMap(I)
    Ic = I
    Mx, Tbx = cumMinEngVer(e)
    My, Tby = cumMinEngHor(e)
    removed_c = 0
    removed_r = 0
    T[0][1] = np.amin(Mx[height - 1])
    My_transpose = np.transpose(My)
    T[1][0] = np.amin(My_transpose[height - 1])
    for i in range(nr + nc):
        # print i
        if removed_c == nc:
            print "all columns removed"
            My, Tby = cumMinEngHor(e)
            Ic, E = rmHorSeam(Ic, My, Tby)
            res_list.append(Ic)
            e = genEngMap(Ic)
            removed_r += 1
        elif removed_r == nr:
            print "all rows removed"
            Mx, Tbx = cumMinEngVer(e)
            Ic, E = rmVerSeam(Ic, My, Tby)
            res_list.append(Ic)
            e = genEngMap(Ic)
            removed_c += 1
        elif T[removed_r][removed_c +
                          1] > T[removed_r +
                                 1][removed_c]:  #here is the problem
            print "romoving row"
            My, Tby = cumMinEngHor(e)
            Ic, E = rmHorSeam(Ic, My, Tby)
            res_list.append(Ic)
            e = genEngMap(Ic)
            removed_r += 1
            Mx, Tbx = cumMinEngVer(e)
            My, Tby = cumMinEngHor(e)
            T[removed_r][removed_c + 1] = np.amin(Mx[height - 1 - removed_r])
            My_transpose = np.transpose(My)
            if (removed_r < nr):
                T[removed_r + 1][removed_c] = np.amin(My_transpose[width - 1 -
                                                                   removed_c])
        else:
            print "removing column"
            Mx, Tbx = cumMinEngVer(e)
            Ic, E = rmVerSeam(Ic, Mx, Tbx)
            res_list.append(Ic)
            e = genEngMap(Ic)
            removed_c += 1
            Mx, Tbx = cumMinEngVer(e)
            My, Tby = cumMinEngHor(e)
            if (removed_c < nc):
                T[removed_r][removed_c + 1] = np.amin(Mx[height - 1 -
                                                         removed_r])
            My_transpose = np.transpose(My)
            T[removed_r + 1][removed_c] = np.amin(My_transpose[width - 1 -
                                                               removed_c])
    # print Ic.shape
    imageio.mimsave('./Shanghai2Output.gif', res_list)
    return Ic, T


# test = np.array([[5.5, 8, 4.5, 6, 3], [13, 9, 30, 27, 19], [6.5, 7, 6, 12.5, 8], [16, 24, 27, 11, 13], [3, 6, 4.5, 8, 5.5]])
# data1 = np.array([[[1, 2, 3], [1, 2, 3], [1, 6, 3], [1, 2, 3], [1, 2, 3]], [[4, 5, 6], [5, 5, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]], [[1, 2, 3], [1, 2, 3], [1, 2, 4], [1, 2, 3], [1, 2, 3]], [[4, 5, 6], [4, 5, 6], [4, 5, 6], [4, 7, 6], [4, 5, 6]], [[7, 8, 9], [7, 8, 9], [10, 11, 12], [3, 5, 0], [2, 1, 6]]])
# carv(data1, 2, 2)

# img1 =  Image.open("shanghai2.jpg")
# data1 = np.asarray(img1, dtype="int32")
# Ic, T = carv(data1, 50, 30)
# Ic = np.asarray(Ic, dtype="uint8")
# plt.imshow(Ic)
# plt.show()
Exemple #8
0
def carv(I, nr, nc):
    # Your Code Here
    N, M, _ = I.shape
    # construct the empty matrix T
    T = np.zeros((nr + 1, nc + 1))
    # initialize the mapping dictionary
    image_map = {}
    image_map[(0, 0)] = I
    # initial the track table, 1 is left and 2 is up
    Tbt = np.zeros((nr + 1, nc + 1))
    Tbt[0, :] = 1
    Tbt[:, 0] = 2
    Tbt[0, 0] = 0

    # fill the first row and col of the T matrix
    for i in range(1, nr + 1):
        # new coor
        coor = (i, 0)
        up_coor = (i - 1, 0)
        I_up = image_map[up_coor]
        # new image with one row deleted
        e = genEngMap(I_up)
        My, Tby = cumMinEngHor(e)
        Iy, E = rmHorSeam(I_up, My, Tby)
        # add the new image to the dict and fill the (i,0) of E matrix
        image_map[coor] = Iy
        T[coor] = T[up_coor] + E

    for j in range(1, nc + 1):
        # new coor
        coor = (0, j)
        left_coor = (0, j - 1)
        I_left = image_map[left_coor]
        # new image with one column deleted
        e = genEngMap(I_left)
        Mx, Tbx = cumMinEngVer(e)
        Ix, E = rmVerSeam(I_left, Mx, Tbx)
        # add the new image to the dict and fill the (0,j) of E matrix
        image_map[coor] = Ix
        T[coor] = T[left_coor] + E

    # DP to complete T matrix
    for ii in range(1, nr + 1):
        for jj in range(1, nc + 1):
            coor = (ii, jj)
            up_coor = (ii - 1, jj)
            left_coor = (ii, jj - 1)

            candidate_img_list = []
            cost_list = []
            # grow from left, delete col
            I_left = image_map[left_coor]
            e = genEngMap(I_left)
            Mx, Tbx = cumMinEngVer(e)
            Ix, Ex = rmVerSeam(I_left, Mx, Tbx)
            # Ix = np.pad(Ix, ((0, ii), (0, jj)), 'constant')
            cost_from_left = Ex + T[left_coor]
            # grow from up, delete row
            I_up = image_map[up_coor]
            e = genEngMap(I_up)
            My, Tby = cumMinEngHor(e)
            Iy, Ey = rmHorSeam(I_up, My, Tby)
            # Iy = np.pad(Iy, ((0,ii),(0,jj)), 'constant')
            cost_from_up = Ey + T[up_coor]
            # construct cost list (2 elements)
            cost_list.append(cost_from_left)
            cost_list.append(cost_from_up)
            # add candidate imgs to the list
            candidate_img_list.append(Ix)
            candidate_img_list.append(Iy)
            # construct Tbt and T table
            # 1 is left and 2 is up
            indentify_direction = np.argmin(cost_list)
            Tbt[ii, jj] = indentify_direction + 1
            T[ii, jj] = cost_list[indentify_direction]
            image_map[coor] = candidate_img_list[indentify_direction]
    # from (nr,nc) trace back along the shortest path
    path, path_imags = shortest_path_delete_imags(image_map, Tbt)
    # for the return Ic image
    Ic = path_imags[-1]

    # make the gif
    make_gif(N, M, path_imags)

    return Ic, T
def delVer(I):
    e = genEngMap(I)
    Mv, Tbv = cumMinEngVer(e)
    Iv, Ev = rmVerSeam(I, Mv, Tbv)
    return Iv, Ev
def delHor(I):
    e = genEngMap(I)
    Mh, Tbh = cumMinEngHor(e)
    Ih, Eh = rmHorSeam(I, Mh, Tbh)
    return Ih, Eh
def cutV(I):
    Mx, Tbx = cumMinEngVer(genEngMap(I))
    Ix, Ex = rmVerSeam(I, Mx, Tbx)
    return Ix, Ex
def cutH(I):
    My, Tby = cumMinEngHor(genEngMap(I))
    Iy, Ey = rmHorSeam(I, My, Tby)
    return Iy, Ey
Exemple #13
0
def carv(I, nr, nc):
    # Your Code Here
    r = nr + 1
    c = nc + 1
    image_list = [[[] for j in range(c)] for i in range(r)]
    T = np.zeros((r, c))
    Tr = np.zeros((r, c))
    image_list[0][0] = np.copy(I)

    for i in list(range(1, c)):
        img = np.copy(image_list[0][i - 1])
        e = genEngMap.genEngMap(img)
        M_left, Tb_left = cumMinEngVer.cumMinEngVer(e)
        image, cost = rmVerSeam.rmVerSeam(img, M_left, Tb_left)
        image_list[0][i] = np.copy(image)
        Tr[0][i] = Tr[0][i - 1] + cost

    for j in list(range(1, r)):
        img = np.copy(image_list[j - 1][0])
        e = genEngMap.genEngMap(img)
        M_up, Tb_up = cumMinEngHor.cumMinEngHor(e)
        image_b, cost = rmHorSeam.rmHorSeam(img, M_up, Tb_up)
        image_list[j][0] = np.copy(image_b)
        Tr[j][0] = Tr[j - 1][0] + cost
        T[j][0] = 1

    for i in list(range(1, r)):
        for j in list(range(1, c)):
            img = np.copy(image_list[i][j - 1])
            e_left = genEngMap.genEngMap(img)
            M_left, Tb_left = cumMinEngVer.cumMinEngVer(e_left)
            image_left, cost_left = rmVerSeam.rmVerSeam(img, M_left, Tb_left)

            img = np.copy(image_list[i - 1][j])
            e_up = genEngMap.genEngMap(img)
            M_up, Tb_up = cumMinEngHor.cumMinEngHor(e_up)
            image_up, cost_up = rmHorSeam.rmHorSeam(img, M_up, Tb_up)

            cmp_list = [Tr[i, j - 1] + cost_left, Tr[i - 1, j] + cost_up]
            min_val = min(cmp_list)
            Tr[i, j] = min_val
            min_index = cmp_list.index(min_val)
            T[i, j] = min_index
            if (min_index == 0):
                image_list[i][j] = np.copy(image_left)

            else:
                image_list[i][j] = np.copy(image_up)
    Ic = image_list[r - 1][c - 1]

    #Saving the last frame
    im = Image.fromarray(Ic)
    im.save('Scenary_final.jpg')

    #creating the GIF
    gif_list = [[] for j in range(nr + nc + 1)]
    i = nr + nc
    carved_list = backtrack(T, nr, nc, image_list, gif_list, i)

    imageio.mimsave('Scenary.gif', carved_list, duration=0.2)

    return Ic, Tr
Exemple #14
0
plt.figure(1)
plt.imshow(I)

# auto-refined mask
x1 = ind[1]
y1 = ind[0]
x2 = ind[3]
y2 = ind[2]
mask, h, w = Domask(I, x1, x2, y1, y2)
I_label = label(I, mask, x1, x2, y1, y2)
plt.figure(2)
plt.imshow(I_label)

# object removal with weighted seam carving
nr = 0
nc = ind[3] - ind[1]
[Ic, T] = carv(I, nr, nc, I_label)
fig2 = plt.figure(3)
plt.imshow(Ic)

# seam insertion
Ic_n = Ic
summ = int(nc / 2)
I_label_insert = np.ones(np.shape(Ic_n[:, :, 0]))
a = genEngMap(Ic_n, I_label_insert)
[Mx, Tbx] = cumMinEngVer(a)
[Ix, Ex] = insertVerSeam(Ic_n, Mx, Tbx, summ)
plt.figure(4)
plt.imshow(Ix)
plt.show()