def gen_FFT_M2X_finish(funname, M):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block("void %s(%s *y, %s s)\n" % (funname, basetype, type))
    y = parameter("y", array=True)
    s = parameter("s")
    f = var("f")
    print

    for j in range(1, M / 4):
        f ^= y[2 * j + 1]
        if j == M / 8:
            y[2 * j] ^= y[2 * j] - f
        else:
            y[2 * j] ^= y[2 * j] - tan(2.0 * pi * j / M) * f
        y[2 * j + 1] ^= (1.0 / cos(2.0 * pi * j / M)) * f
    print
    for j in range(M / 4 + 1, M / 2):
        f ^= y[2 * j + 1]
        if j == 3 * M / 8:
            y[2 * j] ^= y[2 * j] + f
        else:
            y[2 * j] ^= y[2 * j] + (-tan(2.0 * pi * j / M)) * f
        y[2 * j + 1] ^= (1.0 / cos(2.0 * pi * j / M)) * f
    print
    f ^= y[M / 2] - s
    y[M / 2] ^= s
    y[M / 2 + 1] ^= f

    end_block()
    print
def gen_core_gen_M_L(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block("void %s(int p, %s *scale, %s q, %s *dML, %s *ML)\n" % (funname, basetype, type, basetype, basetype))
    scale = parameter("scale", array=True)
    q = parameter("q")
    dML = parameter("dML", array=True)
    ML = parameter("ML", array=True, horiz_add=-1)
    f = var("f")

    print
    begin_block("switch(p) ")
    for n in range(0, p_max + 1):
        print "#if FMM_P_MAX >= %i" % n
    for n in range(p_max, -1, -1):
        print "\tcase %i:" % n
        # print "\t\tf = scale[%i];" % n
        f ^= scale[n] * q
        for m in range((n + 1) * (n + 2) - 1, n * (n + 1) - 1, -1):
            ML[m] += f * dML[m]
        print "#endif /* FMM_P_MAX >= %i */" % n
    end_block()

    end_block()
    print
Exemple #3
0
def gen_core_gen_M_L(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block('void %s(int p, %s *scale, %s q, %s *dML, %s *ML)\n' %
                (funname, basetype, type, basetype, basetype))
    scale = parameter("scale", array=True)
    q = parameter("q")
    dML = parameter("dML", array=True)
    ML = parameter("ML", array=True, horiz_add=-1)
    f = var("f")

    print
    begin_block("switch(p) ")
    for n in range(0, p_max + 1):
        print "#if FMM_P_MAX >= %i" % n
    for n in range(p_max, -1, -1):
        print "\tcase %i:" % n
        #print "\t\tf = scale[%i];" % n
        f ^= scale[n] * q
        for m in range((n + 1) * (n + 2) - 1, n * (n + 1) - 1, -1):
            ML[m] += f * dML[m]
        print "#endif /* FMM_P_MAX >= %i */" % n
    end_block()

    end_block()
    print
Exemple #4
0
def gen_FFT_M2X_finish(funname, M):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block('void %s(%s *y, %s s)\n' % (funname, basetype, type))
    y = parameter("y", array=True)
    s = parameter("s")
    f = var("f")
    print

    for j in range(1, M / 4):
        f ^= y[2 * j + 1]
        if j == M / 8:
            y[2 * j] ^= y[2 * j] - f
        else:
            y[2 * j] ^= y[2 * j] - tan(2.0 * pi * j / M) * f
        y[2 * j + 1] ^= (1.0 / cos(2.0 * pi * j / M)) * f
    print
    for j in range(M / 4 + 1, M / 2):
        f ^= y[2 * j + 1]
        if j == 3 * M / 8:
            y[2 * j] ^= y[2 * j] + f
        else:
            y[2 * j] ^= y[2 * j] + (-tan(2.0 * pi * j / M)) * f
        y[2 * j + 1] ^= (1.0 / cos(2.0 * pi * j / M)) * f
    print
    f ^= y[M / 2] - s
    y[M / 2] ^= s
    y[M / 2 + 1] ^= f

    end_block()
    print
Exemple #5
0
def gen_core_eval_L_M_grad_plus(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block(
        'void %s(int p, %s *scale, %s *M, %s *Y, %s *x, %s *y, %s *z)\n' %
        (funname, basetype, basetype, basetype, type, type, type))
    M = parameter("M", array=True, base_array=True)
    Y = parameter("Y", array=True)
    scale = parameter("scale", array=True)

    hx = var("hx")
    hy = var("hy")
    hz = var("hz")
    cx = var("cx")
    cy = var("cy")
    cz = var("cz")
    f1 = var("f1")
    f2 = var("f2")

    print
    hx ^= 0
    hy ^= 0
    hz ^= 0

    print
    begin_block("switch(p) ")
    for j in range(0, p_max + 1):
        print "#if FMM_P_MAX >= %i" % j
    for j in range(p_max, -1, -1):
        print "\tcase %i:" % j
        cx ^= -sqrt(float((j + 2) * (j + 1))) * M[Re(j, 0)] * Y[Re(j + 1, 1)]
        cy ^= -sqrt(float((j + 2) * (j + 1))) * M[Re(j, 0)] * Y[Im(j + 1, 1)]
        cz ^= (j + 1) * M[Re(j, 0)] * Y[Re(j + 1, 0)]

        for k in range(1, j + 1):
            f1 ^= sqrt(float((j + k + 2) * (j + k + 1)))
            f2 ^= sqrt(float((j - k + 2) * (j - k + 1)))
            cx ^= cx - f1*(M[Re(j,k)]*Y[Re(j+1,k+1)] - M[Im(j,k)]*Y[Im(j+1,k+1)])\
                  -f2*(M[Im(j,k)]*Y[Im(j+1,k-1)] - M[Re(j,k)]*Y[Re(j+1,k-1)])
            cy ^= cy - f1*(M[Im(j,k)]*Y[Re(j+1,k+1)] + M[Re(j,k)]*Y[Im(j+1,k+1)])\
                  -f2*(M[Im(j,k)]*Y[Re(j+1,k-1)] + M[Re(j,k)]*Y[Im(j+1,k-1)])
            cz ^= cz - 2.0 * sqrt(float(
                (j + k + 1) * (j - k + 1))) * (M[Im(j, k)] * Y[Im(j + 1, k)] -
                                               M[Re(j, k)] * Y[Re(j + 1, k)])
        hx ^= hx + scale[j] * cx
        hy ^= hy + scale[j] * cy
        hz ^= hz + scale[j] * cz
        print "#endif /* FMM_P_MAX >= %i */" % j
    end_block()

    print '\t*x = hx;'
    print '\t*y = hy;'
    print '\t*z = hz;'

    end_block()
    print
Exemple #6
0
def gen_FFT_X2L_finish(funname, M):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block('void %s(%s *x, %s *y, %s s)\n' %
                (funname, basetype, basetype, type))
    x = parameter("x", array=True)
    y = parameter("y", array=True)
    s = parameter("s")
    f0 = var("f0")
    f1 = var("f1")
    f2 = var("f2")
    f3 = var("f3")
    print

    #y[0] ^= s;
    #y[1] ^= 0.0;
    #y[2] ^= x[0] - y[0];
    #y[3] ^= x[1];
    #for j in range(1, M/4):
    #	y[4*j]   ^=  x[M-2*j]   + y[4*j-2];
    #	y[4*j+1] ^=  y[4*j-1]   - x[M-2*j+1];
    #	y[4*j+2] ^=  x[2*j]     - y[4*j];
    #	y[4*j+3] ^=  x[2*j+1]   - y[4*j+1];
    #y[M]   ^= x[M/2] + y[M-2];
    #y[M+1] ^= 0.0;

    f0 ^= s
    f1 ^= 0.0
    f2 ^= x[0] - f0
    f3 ^= x[1]
    y[0] ^= f0
    y[1] ^= f1
    y[2] ^= f2
    y[3] ^= f3
    for j in range(1, M / 4):
        f0 ^= x[M - 2 * j] + f2
        f1 ^= f3 - x[M - 2 * j + 1]
        y[4 * j] ^= f0
        y[4 * j + 1] ^= f1
        f2 ^= x[2 * j] - f0
        f3 ^= x[2 * j + 1] - f1
        y[4 * j + 2] ^= f2
        y[4 * j + 3] ^= f3

    y[M] ^= x[M / 2] + f2
    y[M + 1] ^= 0.0
    end_block()
    print
def gen_FFT_X2L_finish(funname, M):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block("void %s(%s *x, %s *y, %s s)\n" % (funname, basetype, basetype, type))
    x = parameter("x", array=True)
    y = parameter("y", array=True)
    s = parameter("s")
    f0 = var("f0")
    f1 = var("f1")
    f2 = var("f2")
    f3 = var("f3")
    print

    # y[0] ^= s;
    # y[1] ^= 0.0;
    # y[2] ^= x[0] - y[0];
    # y[3] ^= x[1];
    # for j in range(1, M/4):
    # 	y[4*j]   ^=  x[M-2*j]   + y[4*j-2];
    # 	y[4*j+1] ^=  y[4*j-1]   - x[M-2*j+1];
    # 	y[4*j+2] ^=  x[2*j]     - y[4*j];
    # 	y[4*j+3] ^=  x[2*j+1]   - y[4*j+1];
    # y[M]   ^= x[M/2] + y[M-2];
    # y[M+1] ^= 0.0;

    f0 ^= s
    f1 ^= 0.0
    f2 ^= x[0] - f0
    f3 ^= x[1]
    y[0] ^= f0
    y[1] ^= f1
    y[2] ^= f2
    y[3] ^= f3
    for j in range(1, M / 4):
        f0 ^= x[M - 2 * j] + f2
        f1 ^= f3 - x[M - 2 * j + 1]
        y[4 * j] ^= f0
        y[4 * j + 1] ^= f1
        f2 ^= x[2 * j] - f0
        f3 ^= x[2 * j + 1] - f1
        y[4 * j + 2] ^= f2
        y[4 * j + 3] ^= f3

    y[M] ^= x[M / 2] + f2
    y[M + 1] ^= 0.0
    end_block()
    print
Exemple #8
0
def gen_FFT_X2L_prepare(funname, M):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block('void %s(%s *y, %s *h)\n' % (funname, basetype, type))
    y = parameter("y", array=True)
    f = var("f")
    g = var("g")
    s = var("s")
    print
    # A factor 2 is missing, to be compensated in D_w_over_M

    s ^= y[0]
    y[0] ^= s
    y[1] ^= y[1]
    for j in range(1, M / 2):
        f ^= y[2 * j + 1]
        g ^= y[2 * j]
        s ^= s + g
        if j == M / 4:
            y[2 * j] ^= g + f
            y[2 * j + 1] ^= 0
        else:
            y[2 * j] ^= g + (sin(2.0 * pi * j / M)) * f
            y[2 * j + 1] ^= (cos(2.0 * pi * j / M)) * f

    print '\t*h = s;'
    end_block()
    print
def gen_FFT_X2L_prepare(funname, M):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block("void %s(%s *y, %s *h)\n" % (funname, basetype, type))
    y = parameter("y", array=True)
    f = var("f")
    g = var("g")
    s = var("s")
    print
    # A factor 2 is missing, to be compensated in D_w_over_M

    s ^= y[0]
    y[0] ^= s
    y[1] ^= y[1]
    for j in range(1, M / 2):
        f ^= y[2 * j + 1]
        g ^= y[2 * j]
        s ^= s + g
        if j == M / 4:
            y[2 * j] ^= g + f
            y[2 * j + 1] ^= 0
        else:
            y[2 * j] ^= g + (sin(2.0 * pi * j / M)) * f
            y[2 * j + 1] ^= (cos(2.0 * pi * j / M)) * f

    print "\t*h = s;"
    end_block()
    print
Exemple #10
0
def gen_FFT_M2X_prepare(funname, M):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block('void %s(%s *x, %s *y, %s *h)\n' %
                (funname, basetype, basetype, type))
    x = parameter("x", array=True)
    y = parameter("y", array=True)

    f0 = var("f0")
    f1 = var("f1")
    f2 = var("f2")
    f3 = var("f3")
    s = var("s")
    print

    #for j in range(M/4):
    #	y[2*j]     ^= x[4*j]   + x[4*j+2]
    #	y[2*j+1]   ^= x[4*j+1] + x[4*j+3]
    #	y[M-2*j-2] ^= x[4*j+4] - x[4*j+2]
    #	y[M-2*j-1] ^= x[4*j+3] - x[4*j+5]

    f0 ^= x[0]
    f1 ^= x[1]
    f2 ^= x[2]
    f3 ^= x[3]
    s ^= 0

    for j in range(M / 4):
        y[2 * j] ^= f0 + f2
        y[2 * j + 1] ^= f1 + f3
        f0 ^= x[4 * j + 4]
        f1 ^= x[4 * j + 5]
        y[M - 2 * j - 2] ^= f0 - f2
        y[M - 2 * j - 1] ^= f3 - f1
        if j < M / 4 - 1:
            if (j % 2):
                s ^= s + f0
            else:
                s ^= s - f0
            f2 ^= x[4 * j + 6]
            f3 ^= x[4 * j + 7]
    s ^= 2 * s + f0 + x[0]

    print '\t*h = s;'
    end_block()
    print
def gen_FFT_M2X_prepare(funname, M):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block("void %s(%s *x, %s *y, %s *h)\n" % (funname, basetype, basetype, type))
    x = parameter("x", array=True)
    y = parameter("y", array=True)

    f0 = var("f0")
    f1 = var("f1")
    f2 = var("f2")
    f3 = var("f3")
    s = var("s")
    print

    # for j in range(M/4):
    # 	y[2*j]     ^= x[4*j]   + x[4*j+2]
    # 	y[2*j+1]   ^= x[4*j+1] + x[4*j+3]
    # 	y[M-2*j-2] ^= x[4*j+4] - x[4*j+2]
    # 	y[M-2*j-1] ^= x[4*j+3] - x[4*j+5]

    f0 ^= x[0]
    f1 ^= x[1]
    f2 ^= x[2]
    f3 ^= x[3]
    s ^= 0

    for j in range(M / 4):
        y[2 * j] ^= f0 + f2
        y[2 * j + 1] ^= f1 + f3
        f0 ^= x[4 * j + 4]
        f1 ^= x[4 * j + 5]
        y[M - 2 * j - 2] ^= f0 - f2
        y[M - 2 * j - 1] ^= f3 - f1
        if j < M / 4 - 1:
            if j % 2:
                s ^= s + f0
            else:
                s ^= s - f0
            f2 ^= x[4 * j + 6]
            f3 ^= x[4 * j + 7]
    s ^= 2 * s + f0 + x[0]

    print "\t*h = s;"
    end_block()
    print
Exemple #12
0
def gen_core_eval_L_M(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block('%s %s(int p, %s *scale, %s *LM, %s *Y)\n' %
                (type, funname, basetype, basetype, basetype))
    LM = parameter("LM", array=True, base_array=True)
    Y = parameter("Y", array=True)
    scale = parameter("scale", array=True)

    h = var("h")
    c = var("c")
    two = var("two", 2.0)

    print
    h ^= 0

    print
    begin_block("switch(p) ")
    for j in range(0, p_max + 1):
        print "#if FMM_P_MAX >= %i" % j
    for j in range(p_max, -1, -1):
        print "\tcase %i:" % j
        if j == 0:
            c ^= LM[Re(j, 0)] * Y[Re(j, 0)]
        else:
            c ^= LM[Re(j, 1)] * Y[Re(j, 1)] - LM[Im(j, 1)] * Y[Im(j, 1)]
            for k in range(2, j + 1):
                c += LM[Re(j, k)] * Y[Re(j, k)] - LM[Im(j, k)] * Y[Im(j, k)]
            c ^= two * c + LM[Re(j, 0)] * Y[Re(j, 0)]
        #h ^= c + scale*h
        h += scale[j] * c
        print "#endif /* FMM_P_MAX >= %i */" % j
    end_block()
    print '\treturn h;'
    end_block()
    print
def gen_core_gen_M_L_dipole_plus(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block(
        "void %s(int p, %s *scale, %s mx, %s my, %s mz, %s *Y, %s *L)\n"
        % (funname, basetype, type, type, type, basetype, basetype)
    )
    scale = parameter("scale", array=True)
    mx = parameter("mx")
    my = parameter("my")
    mz = parameter("mz")
    Y = parameter("Y", array=True)
    L = parameter("L", array=True, horiz_add=-1)
    f = var("f")

    print
    begin_block("switch(p) ")
    for j in range(0, p_max + 1):
        print "#if FMM_P_MAX >= %i" % j
    for j in range(p_max, -1, -1):
        print "\tcase %i:" % j
        # print "\t\tf = scale[%i];" % j
        f ^= scale[j]
        for k in range(j + 1 - 1, 2 - 1, -1):
            L[Im(j, k)] += f * (
                (0.5 * sqrt(float((j + k + 1) * (j + k + 2)))) * (my * Y[Re(j + 1, k + 1)] + mx * Y[Im(j + 1, k + 1)])
                + (0.5 * sqrt(float((j - k + 1) * (j - k + 2)))) * (my * Y[Re(j + 1, k - 1)] - mx * Y[Im(j + 1, k - 1)])
                - (sqrt(float((j - k + 1) * (j + k + 1)))) * mz * Y[Im(j + 1, k)]
            )
            L[Re(j, k)] += f * (
                (0.5 * sqrt(float((j + k + 1) * (j + k + 2)))) * (mx * Y[Re(j + 1, k + 1)] - my * Y[Im(j + 1, k + 1)])
                - (0.5 * sqrt(float((j - k + 1) * (j - k + 2)))) * (mx * Y[Re(j + 1, k - 1)] + my * Y[Im(j + 1, k - 1)])
                - (sqrt(float((j - k + 1) * (j + k + 1)))) * mz * Y[Re(j + 1, k)]
            )
        if j > 0:
            L[Im(j, 1)] += f * (
                (0.5 * sqrt(float((j + 1 + 1) * (j + 1 + 2)))) * (my * Y[Re(j + 1, 1 + 1)] + mx * Y[Im(j + 1, 1 + 1)])
                + (0.5 * sqrt(float((j - 1 + 1) * (j - 1 + 2)))) * my * Y[Re(j + 1, 1 - 1)]
                - (sqrt(float((j - 1 + 1) * (j + 1 + 1)))) * mz * Y[Im(j + 1, 1)]
            )
            L[Re(j, 1)] += f * (
                (0.5 * sqrt(float((j + 1 + 1) * (j + 1 + 2)))) * (mx * Y[Re(j + 1, 1 + 1)] - my * Y[Im(j + 1, 1 + 1)])
                - (0.5 * sqrt(float((j - 1 + 1) * (j - 1 + 2)))) * mx * Y[Re(j + 1, 1 - 1)]
                - (sqrt(float((j - 1 + 1) * (j + 1 + 1)))) * mz * Y[Re(j + 1, 1)]
            )
        L[Im(j, 0)] += 0
        L[Re(j, 0)] += f * (
            (sqrt(float(j + 1) * (j + 2))) * (mx * Y[Re(j + 1, 1)] - my * Y[Im(j + 1, 1)])
            - (j + 1) * mz * Y[Re(j + 1, 0)]
        )
        print "#endif /* FMM_P_MAX >= %i */" % j
    end_block()

    end_block()
    print
def gen_core_eval_L_M(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block("%s %s(int p, %s *scale, %s *LM, %s *Y)\n" % (type, funname, basetype, basetype, basetype))
    LM = parameter("LM", array=True, base_array=True)
    Y = parameter("Y", array=True)
    scale = parameter("scale", array=True)

    h = var("h")
    c = var("c")
    two = var("two", 2.0)

    print
    h ^= 0

    print
    begin_block("switch(p) ")
    for j in range(0, p_max + 1):
        print "#if FMM_P_MAX >= %i" % j
    for j in range(p_max, -1, -1):
        print "\tcase %i:" % j
        if j == 0:
            c ^= LM[Re(j, 0)] * Y[Re(j, 0)]
        else:
            c ^= LM[Re(j, 1)] * Y[Re(j, 1)] - LM[Im(j, 1)] * Y[Im(j, 1)]
            for k in range(2, j + 1):
                c += LM[Re(j, k)] * Y[Re(j, k)] - LM[Im(j, k)] * Y[Im(j, k)]
            c ^= two * c + LM[Re(j, 0)] * Y[Re(j, 0)]
            # h ^= c + scale*h
        h += scale[j] * c
        print "#endif /* FMM_P_MAX >= %i */" % j
    end_block()
    print "\treturn h;"
    end_block()
    print
def gen_core_gen_M_L_dipole_minus(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block(
        "void %s(int p, %s *scale, %s mx, %s my, %s mz, %s *Y, %s *M)\n"
        % (funname, basetype, type, type, type, basetype, basetype)
    )
    scale = parameter("scale")
    mx = parameter("mx")
    my = parameter("my")
    mz = parameter("mz")
    Y = parameter("Y", array=True)
    M = parameter("M", array=True, horiz_add=-1)
    f = var("f")

    print
    begin_block("switch(p) ")
    for j in range(1, p_max + 1):
        print "#if FMM_P_MAX >= %i" % j
    for j in range(p_max, 3 - 1, -1):
        print "\tcase %i:" % j
        ##print "\t\tf = scale[%i];" % j
        f ^= scale[j]

        M[Im(j, j)] += f * (
            (0.5 * sqrt(float(2 * j - 1) * (2 * j))) * (my * Y[Re(j - 1, j - 1)] - mx * Y[Im(j - 1, j - 1)])
        )
        M[Re(j, j)] += f * (
            (-0.5 * sqrt(float(2 * j - 1) * (2 * j))) * (mx * Y[Re(j - 1, j - 1)] + my * Y[Im(j - 1, j - 1)])
        )
        if j > 1:
            M[Im(j, j - 1)] += f * (
                (0.5 * sqrt(float((2 * j - 2) * (2 * j - 1)))) * (my * Y[Re(j - 1, j - 2)] - mx * Y[Im(j - 1, j - 2)])
                + (sqrt(float(2 * j - 1))) * mz * Y[Im(j - 1, j - 1)]
            )
            M[Re(j, j - 1)] += f * (
                (-0.5 * sqrt(float((2 * j - 2) * (2 * j - 1)))) * (mx * Y[Re(j - 1, j - 2)] + my * Y[Im(j - 1, j - 2)])
                + (sqrt(float(2 * j - 1))) * mz * Y[Re(j - 1, j - 1)]
            )
        for k in range(j - 2 + 1 - 1, 2 - 1, -1):
            M[Im(j, k)] += f * (
                (0.5 * sqrt(float((j - k - 1) * (j - k)))) * (my * Y[Re(j - 1, k + 1)] + mx * Y[Im(j - 1, k + 1)])
                + (0.5 * sqrt(float((j + k - 1) * (j + k)))) * (my * Y[Re(j - 1, k - 1)] - mx * Y[Im(j - 1, k - 1)])
                + (sqrt(float((j - k) * (j + k)))) * mz * Y[Im(j - 1, k)]
            )
            M[Re(j, k)] += f * (
                (0.5 * sqrt(float((j - k - 1) * (j - k)))) * (mx * Y[Re(j - 1, k + 1)] - my * Y[Im(j - 1, k + 1)])
                - (0.5 * sqrt(float((j + k - 1) * (j + k)))) * (mx * Y[Re(j - 1, k - 1)] + my * Y[Im(j - 1, k - 1)])
                + (sqrt(float((j - k) * (j + k)))) * mz * Y[Re(j - 1, k)]
            )

        M[Im(j, 1)] += f * (
            (0.5 * sqrt(float((j - 1 - 1) * (j - 1)))) * (my * Y[Re(j - 1, 1 + 1)] + mx * Y[Im(j - 1, 1 + 1)])
            + (0.5 * sqrt(float((j + 1 - 1) * (j + 1)))) * my * Y[Re(j - 1, 1 - 1)]
            + (sqrt(float((j - 1) * (j + 1)))) * mz * Y[Im(j - 1, 1)]
        )
        M[Re(j, 1)] += f * (
            (0.5 * sqrt(float((j - 1 - 1) * (j - 1)))) * (mx * Y[Re(j - 1, 1 + 1)] - my * Y[Im(j - 1, 1 + 1)])
            - (0.5 * sqrt(float((j + 1 - 1) * (j + 1)))) * mx * Y[Re(j - 1, 1 - 1)]
            + (sqrt(float((j - 1) * (j + 1)))) * mz * Y[Re(j - 1, 1)]
        )
        M[Im(j, 0)] += 0
        M[Re(j, 0)] += f * (
            j * mz * Y[Re(j - 1, 0)] + sqrt(float((j - 1) * j)) * (mx * Y[Re(j - 1, 1)] - my * Y[Im(j - 1, 1)])
        )
        print "#endif /* FMM_P_MAX >= %i */" % j

    print "\tcase 2:"
    f ^= scale[2]
    M[11] += f * (sqrt(float(3)) * (my * Y[4] - mx * Y[5]))
    M[10] += f * ((-sqrt(float(3))) * (mx * Y[4] + my * Y[5]))
    M[9] += f * (sqrt(float(1.5)) * my * Y[2] + sqrt(float(3)) * mz * Y[5])
    M[8] += f * ((-sqrt(float(1.5))) * mx * Y[2] + sqrt(float(3)) * mz * Y[4])
    M[7] += 0
    M[6] += f * (2.0 * mz * Y[2] + sqrt(float(2)) * (mx * Y[4] - my * Y[5]))
    print "#endif /* FMM_P_MAX >= 2 */"
    print "\tcase 1:"
    f ^= scale[1]
    M[5] += f * sqrt(float(0.5)) * my * Y[0]
    M[4] += f * (-sqrt(float(0.5))) * mx * Y[0]
    M[3] += 0
    M[2] += f * mz * Y[0]
    print "#endif /* FMM_P_MAX >= 1 */"
    print "\tcase 0:"
    M[1] += 0
    M[0] += 0

    end_block()

    end_block()
    print
Exemple #16
0
def gen_core_gen_M_L_dipole_minus(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block(
        'void %s(int p, %s *scale, %s mx, %s my, %s mz, %s *Y, %s *M)\n' %
        (funname, basetype, type, type, type, basetype, basetype))
    scale = parameter("scale")
    mx = parameter("mx")
    my = parameter("my")
    mz = parameter("mz")
    Y = parameter("Y", array=True)
    M = parameter("M", array=True, horiz_add=-1)
    f = var("f")

    print
    begin_block("switch(p) ")
    for j in range(1, p_max + 1):
        print "#if FMM_P_MAX >= %i" % j
    for j in range(p_max, 3 - 1, -1):
        print "\tcase %i:" % j
        ##print "\t\tf = scale[%i];" % j
        f ^= scale[j]

        M[Im(j,
             j)] += f * ((0.5 * sqrt(float(2 * j - 1) * (2 * j))) *
                         (my * Y[Re(j - 1, j - 1)] - mx * Y[Im(j - 1, j - 1)]))
        M[Re(j,
             j)] += f * ((-0.5 * sqrt(float(2 * j - 1) * (2 * j))) *
                         (mx * Y[Re(j - 1, j - 1)] + my * Y[Im(j - 1, j - 1)]))
        if j > 1:
            M[Im(j, j - 1)] += f * (
                (0.5 * sqrt(float((2 * j - 2) * (2 * j - 1)))) *
                (my * Y[Re(j - 1, j - 2)] - mx * Y[Im(j - 1, j - 2)]) +
                (sqrt(float(2 * j - 1))) * mz * Y[Im(j - 1, j - 1)])
            M[Re(j, j - 1)] += f * (
                (-0.5 * sqrt(float((2 * j - 2) * (2 * j - 1)))) *
                (mx * Y[Re(j - 1, j - 2)] + my * Y[Im(j - 1, j - 2)]) +
                (sqrt(float(2 * j - 1))) * mz * Y[Re(j - 1, j - 1)])
        for k in range(j - 2 + 1 - 1, 2 - 1, -1):
            M[Im(j, k)] += f * (
                (0.5 * sqrt(float((j - k - 1) * (j - k)))) *
                (my * Y[Re(j - 1, k + 1)] + mx * Y[Im(j - 1, k + 1)]) +
                (0.5 * sqrt(float((j + k - 1) * (j + k)))) *
                (my * Y[Re(j - 1, k - 1)] - mx * Y[Im(j - 1, k - 1)]) +
                (sqrt(float((j - k) * (j + k)))) * mz * Y[Im(j - 1, k)])
            M[Re(j, k)] += f * (
                (0.5 * sqrt(float((j - k - 1) * (j - k)))) *
                (mx * Y[Re(j - 1, k + 1)] - my * Y[Im(j - 1, k + 1)]) -
                (0.5 * sqrt(float((j + k - 1) * (j + k)))) *
                (mx * Y[Re(j - 1, k - 1)] + my * Y[Im(j - 1, k - 1)]) +
                (sqrt(float((j - k) * (j + k)))) * mz * Y[Re(j - 1, k)])

        M[Im(
            j,
            1)] += f * ((0.5 * sqrt(float((j - 1 - 1) * (j - 1)))) *
                        (my * Y[Re(j - 1, 1 + 1)] + mx * Y[Im(j - 1, 1 + 1)]) +
                        (0.5 * sqrt(float(
                            (j + 1 - 1) *
                            (j + 1)))) * my * Y[Re(j - 1, 1 - 1)] +
                        (sqrt(float(
                            (j - 1) * (j + 1)))) * mz * Y[Im(j - 1, 1)])
        M[Re(
            j,
            1)] += f * ((0.5 * sqrt(float((j - 1 - 1) * (j - 1)))) *
                        (mx * Y[Re(j - 1, 1 + 1)] - my * Y[Im(j - 1, 1 + 1)]) -
                        (0.5 * sqrt(float(
                            (j + 1 - 1) *
                            (j + 1)))) * mx * Y[Re(j - 1, 1 - 1)] +
                        (sqrt(float(
                            (j - 1) * (j + 1)))) * mz * Y[Re(j - 1, 1)])
        M[Im(j, 0)] += 0
        M[Re(j, 0)] += f * (j * mz * Y[Re(j - 1, 0)] + sqrt(float(
            (j - 1) * j)) * (mx * Y[Re(j - 1, 1)] - my * Y[Im(j - 1, 1)]))
        print "#endif /* FMM_P_MAX >= %i */" % j

    print "\tcase 2:"
    f ^= scale[2]
    M[11] += f * (sqrt(float(3)) * (my * Y[4] - mx * Y[5]))
    M[10] += f * ((-sqrt(float(3))) * (mx * Y[4] + my * Y[5]))
    M[9] += f * (sqrt(float(1.5)) * my * Y[2] + sqrt(float(3)) * mz * Y[5])
    M[8] += f * ((-sqrt(float(1.5))) * mx * Y[2] + sqrt(float(3)) * mz * Y[4])
    M[7] += 0
    M[6] += f * (2.0 * mz * Y[2] + sqrt(float(2)) * (mx * Y[4] - my * Y[5]))
    print "#endif /* FMM_P_MAX >= 2 */"
    print "\tcase 1:"
    f ^= scale[1]
    M[5] += f * sqrt(float(0.5)) * my * Y[0]
    M[4] += f * (-sqrt(float(0.5))) * mx * Y[0]
    M[3] += 0
    M[2] += f * mz * Y[0]
    print "#endif /* FMM_P_MAX >= 1 */"
    print "\tcase 0:"
    M[1] += 0
    M[0] += 0

    end_block()

    end_block()
    print
def gen_core_eval_L_M_grad_plus(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block(
        "void %s(int p, %s *scale, %s *M, %s *Y, %s *x, %s *y, %s *z)\n"
        % (funname, basetype, basetype, basetype, type, type, type)
    )
    M = parameter("M", array=True, base_array=True)
    Y = parameter("Y", array=True)
    scale = parameter("scale", array=True)

    hx = var("hx")
    hy = var("hy")
    hz = var("hz")
    cx = var("cx")
    cy = var("cy")
    cz = var("cz")
    f1 = var("f1")
    f2 = var("f2")

    print
    hx ^= 0
    hy ^= 0
    hz ^= 0

    print
    begin_block("switch(p) ")
    for j in range(0, p_max + 1):
        print "#if FMM_P_MAX >= %i" % j
    for j in range(p_max, -1, -1):
        print "\tcase %i:" % j
        cx ^= -sqrt(float((j + 2) * (j + 1))) * M[Re(j, 0)] * Y[Re(j + 1, 1)]
        cy ^= -sqrt(float((j + 2) * (j + 1))) * M[Re(j, 0)] * Y[Im(j + 1, 1)]
        cz ^= (j + 1) * M[Re(j, 0)] * Y[Re(j + 1, 0)]

        for k in range(1, j + 1):
            f1 ^= sqrt(float((j + k + 2) * (j + k + 1)))
            f2 ^= sqrt(float((j - k + 2) * (j - k + 1)))
            cx ^= (
                cx
                - f1 * (M[Re(j, k)] * Y[Re(j + 1, k + 1)] - M[Im(j, k)] * Y[Im(j + 1, k + 1)])
                - f2 * (M[Im(j, k)] * Y[Im(j + 1, k - 1)] - M[Re(j, k)] * Y[Re(j + 1, k - 1)])
            )
            cy ^= (
                cy
                - f1 * (M[Im(j, k)] * Y[Re(j + 1, k + 1)] + M[Re(j, k)] * Y[Im(j + 1, k + 1)])
                - f2 * (M[Im(j, k)] * Y[Re(j + 1, k - 1)] + M[Re(j, k)] * Y[Im(j + 1, k - 1)])
            )
            cz ^= cz - 2.0 * sqrt(float((j + k + 1) * (j - k + 1))) * (
                M[Im(j, k)] * Y[Im(j + 1, k)] - M[Re(j, k)] * Y[Re(j + 1, k)]
            )
        hx ^= hx + scale[j] * cx
        hy ^= hy + scale[j] * cy
        hz ^= hz + scale[j] * cz
        print "#endif /* FMM_P_MAX >= %i */" % j
    end_block()

    print "\t*x = hx;"
    print "\t*y = hy;"
    print "\t*z = hz;"

    end_block()
    print
def gen_core_eval_L_M_grad_minus(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block(
        "void %s(int p, %s *scale, %s *L, %s *Y, %s *x, %s *y, %s *z)\n"
        % (funname, basetype, basetype, basetype, type, type, type)
    )
    L = parameter("L", array=True, base_array=True)
    Y = parameter("Y", array=True)
    scale = parameter("scale", array=True)

    hx = var("hx")
    hy = var("hy")
    hz = var("hz")
    cx = var("cx")
    cy = var("cy")
    cz = var("cz")
    f1 = var("f1")
    f2 = var("f2")

    print
    hx ^= 0
    hy ^= 0
    hz ^= 0

    print
    begin_block("switch(p) ")
    for j in range(1, p_max + 1):
        print "#if FMM_P_MAX >= %i" % j
    for j in range(p_max, 0, -1):
        print "\tcase %i:" % j
        cx ^= sqrt(float(j * (j - 1))) * L[Re(j, 0)] * Y[Re(j - 1, 1)]
        cy ^= sqrt(float(j * (j - 1))) * L[Re(j, 0)] * Y[Im(j - 1, 1)]
        cz ^= j * L[Re(j, 0)] * Y[Re(j - 1, 0)]

        for k in range(1, j + 1):
            if k <= j - 2:
                f1 ^= sqrt(float((j - k) * (j - k - 1)))
                f2 ^= sqrt(float((j + k) * (j + k - 1)))
                cx ^= (
                    cx
                    + f1 * (L[Re(j, k)] * Y[Re(j - 1, k + 1)] - L[Im(j, k)] * Y[Im(j - 1, k + 1)])
                    + f2 * (L[Im(j, k)] * Y[Im(j - 1, k - 1)] - L[Re(j, k)] * Y[Re(j - 1, k - 1)])
                )
                cy ^= (
                    cy
                    + f1 * (L[Im(j, k)] * Y[Re(j - 1, k + 1)] + L[Re(j, k)] * Y[Im(j - 1, k + 1)])
                    + f2 * (L[Im(j, k)] * Y[Re(j - 1, k - 1)] + L[Re(j, k)] * Y[Im(j - 1, k - 1)])
                )
            else:
                cx ^= cx - sqrt(float((j + k) * (j + k - 1))) * (
                    L[Re(j, k)] * Y[Re(j - 1, k - 1)] - L[Im(j, k)] * Y[Im(j - 1, k - 1)]
                )
                cy ^= cy + sqrt(float((j + k) * (j + k - 1))) * (
                    L[Im(j, k)] * Y[Re(j - 1, k - 1)] + L[Re(j, k)] * Y[Im(j - 1, k - 1)]
                )

            cz ^= cz + 2.0 * sqrt(float((j + k) * (j - k))) * (
                L[Re(j, k)] * Y[Re(j - 1, k)] - L[Im(j, k)] * Y[Im(j - 1, k)]
            )
        hx ^= hx + scale[j] * cx
        hy ^= hy + scale[j] * cy
        hz ^= hz + scale[j] * cz
        print "#endif /* FMM_P_MAX >= %i */" % j
    end_block()

    print "\t*x = hx;"
    print "\t*y = hy;"
    print "\t*z = hz;"

    end_block()
    print
Exemple #19
0
def gen_core_gen_M_L_dipole_plus(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block(
        'void %s(int p, %s *scale, %s mx, %s my, %s mz, %s *Y, %s *L)\n' %
        (funname, basetype, type, type, type, basetype, basetype))
    scale = parameter("scale", array=True)
    mx = parameter("mx")
    my = parameter("my")
    mz = parameter("mz")
    Y = parameter("Y", array=True)
    L = parameter("L", array=True, horiz_add=-1)
    f = var("f")

    print
    begin_block("switch(p) ")
    for j in range(0, p_max + 1):
        print "#if FMM_P_MAX >= %i" % j
    for j in range(p_max, -1, -1):
        print "\tcase %i:" % j
        #print "\t\tf = scale[%i];" % j
        f ^= scale[j]
        for k in range(j + 1 - 1, 2 - 1, -1):
            L[Im(j, k)] += f * (
                (0.5 * sqrt(float((j + k + 1) * (j + k + 2)))) *
                (my * Y[Re(j + 1, k + 1)] + mx * Y[Im(j + 1, k + 1)]) +
                (0.5 * sqrt(float((j - k + 1) * (j - k + 2)))) *
                (my * Y[Re(j + 1, k - 1)] - mx * Y[Im(j + 1, k - 1)]) -
                (sqrt(float(
                    (j - k + 1) * (j + k + 1)))) * mz * Y[Im(j + 1, k)])
            L[Re(j, k)] += f * (
                (0.5 * sqrt(float((j + k + 1) * (j + k + 2)))) *
                (mx * Y[Re(j + 1, k + 1)] - my * Y[Im(j + 1, k + 1)]) -
                (0.5 * sqrt(float((j - k + 1) * (j - k + 2)))) *
                (mx * Y[Re(j + 1, k - 1)] + my * Y[Im(j + 1, k - 1)]) -
                (sqrt(float(
                    (j - k + 1) * (j + k + 1)))) * mz * Y[Re(j + 1, k)])
        if j > 0:
            L[Im(j, 1)] += f * (
                (0.5 * sqrt(float((j + 1 + 1) * (j + 1 + 2)))) *
                (my * Y[Re(j + 1, 1 + 1)] + mx * Y[Im(j + 1, 1 + 1)]) +
                (0.5 * sqrt(float(
                    (j - 1 + 1) * (j - 1 + 2)))) * my * Y[Re(j + 1, 1 - 1)] -
                (sqrt(float(
                    (j - 1 + 1) * (j + 1 + 1)))) * mz * Y[Im(j + 1, 1)])
            L[Re(j, 1)] += f * (
                (0.5 * sqrt(float((j + 1 + 1) * (j + 1 + 2)))) *
                (mx * Y[Re(j + 1, 1 + 1)] - my * Y[Im(j + 1, 1 + 1)]) -
                (0.5 * sqrt(float(
                    (j - 1 + 1) * (j - 1 + 2)))) * mx * Y[Re(j + 1, 1 - 1)] -
                (sqrt(float(
                    (j - 1 + 1) * (j + 1 + 1)))) * mz * Y[Re(j + 1, 1)])
        L[Im(j, 0)] += 0
        L[Re(j, 0)] += f * ((sqrt(float(j + 1) * (j + 2))) *
                            (mx * Y[Re(j + 1, 1)] - my * Y[Im(j + 1, 1)]) -
                            (j + 1) * mz * Y[Re(j + 1, 0)])
        print "#endif /* FMM_P_MAX >= %i */" % j
    end_block()

    end_block()
    print
def gen_spherical_harmonics(funname, p):
    Fact = [0.0 for i in range(2 * p + 1)]
    Fact[0] = 1.0
    for n in range(1, len(Fact)):
        Fact[n] = n * Fact[n - 1]

    B = [0.0 for i in range((p * (p + 1)) / 2 + p + 1)]

    for n in range(p + 1):
        for m in range(n + 1):
            B[J(n, m)] = math.sqrt(Fact[n - abs(m)] / Fact[n + abs(m)])

    R = [0.0] + [1.0 / i for i in range(1, p + 1)]

    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block(
        'void %s_p%i(int p, %s *Y, %s sin_phi, %s cos_phi, %s cos_theta)\n' %
        (funname, p, basetype, type, type, type))
    Y = parameter("Y", array=True)
    sin_phi = parameter("sin_phi")
    cos_phi = parameter("cos_phi")
    cos_theta = parameter("cos_theta")

    pmm = var("pmm")
    pm1 = var("pm1")
    pm2 = var("pm2")
    pml = var("pml")
    c = var("c")
    s = var("s")
    h = var("h")
    alpha = var("alpha")
    beta = var("beta")
    sqrt_1_minus_cos_theta_2 = var("sqrt_1_minus_cos_theta_2",
                                   sqrt(1.0 - cos_theta * cos_theta))
    print

    pmm ^= 1.0

    ## m==0: #############################
    Y[0] ^= B[0] * pmm
    Y[1] ^= 0.0
    pm2 ^= pmm
    pml ^= pmm * cos_theta
    Y[2] ^= pml
    Y[3] ^= 0.0
    k = 1
    for l in range(2, p + 1):
        pm1 ^= pml
        pml ^= R[l] * ((2 * l - 1) * cos_theta * pm1 - (l - 1) * pm2)
        pm2 ^= pm1
        k += l
        Y[2 * k] ^= pml
        Y[2 * k + 1] ^= 0.0

    ## m==1: #############################
    m = 1
    pmm *= -sqrt_1_minus_cos_theta_2
    s ^= sin_phi
    c ^= cos_phi
    alpha ^= 1 - c
    beta ^= s
    h ^= B[2] * pmm
    Y[4] ^= c * h
    Y[5] ^= s * h
    pm2 ^= pmm
    pml ^= 3 * pmm * cos_theta
    h ^= B[4] * pml
    Y[8] ^= c * h
    Y[9] ^= s * h
    #k = (m+1)*(m+2)/2 + m
    k = 4
    for l in range(3, p + 1):
        pm1 ^= pml
        pml ^= R[l - 1] * ((2 * l - 1) * cos_theta * pm1 - l * pm2)
        pm2 ^= pm1
        k += l
        h ^= B[k] * pml
        Y[2 * k] ^= c * h
        Y[2 * k + 1] ^= s * h

    ## 2 <= m <= p-1: #############################
    kk = 1
    for m in range(2, p):
        pmm *= (1 - 2 * m) * sqrt_1_minus_cos_theta_2
        h ^= (alpha * c + beta * s)
        s ^= s - alpha * s + beta * c  # to simplify transformation to fma, fms, fnms
        c -= h
        kk += m
        k = kk + m
        h ^= B[k] * pmm
        Y[2 * k] ^= c * h
        Y[2 * k + 1] ^= s * h
        pm2 ^= pmm
        pml ^= (2 * m + 1) * pmm * cos_theta
        k += m + 1
        h ^= B[k] * pml
        Y[2 * k] ^= c * h
        Y[2 * k + 1] ^= s * h
        for l in range(m + 2, p + 1):
            pm1 ^= pml
            pml ^= R[l - m] * ((2 * l - 1) * cos_theta * pm1 -
                               (l + m - 1) * pm2)
            pm2 ^= pm1
            k += l
            h ^= B[k] * pml
            Y[2 * k] ^= c * h
            Y[2 * k + 1] ^= s * h
    ## m==p: #############################
    m = p
    pmm *= (1 - 2 * m) * sqrt_1_minus_cos_theta_2
    h ^= (alpha * c + beta * s)
    s ^= s - alpha * s + beta * c  # to simplify transformation to fma, fms, fnms
    c -= h
    kk += m
    k = kk + m
    h ^= B[k] * pmm
    Y[2 * k] ^= c * h
    Y[2 * k + 1] ^= s * h

    end_block()
Exemple #21
0
def gen_core_eval_L_M_grad_minus(funname, p_max):
    type = Op.templates["type"]
    basetype = Op.templates["basetype"]

    begin_block(
        'void %s(int p, %s *scale, %s *L, %s *Y, %s *x, %s *y, %s *z)\n' %
        (funname, basetype, basetype, basetype, type, type, type))
    L = parameter("L", array=True, base_array=True)
    Y = parameter("Y", array=True)
    scale = parameter("scale", array=True)

    hx = var("hx")
    hy = var("hy")
    hz = var("hz")
    cx = var("cx")
    cy = var("cy")
    cz = var("cz")
    f1 = var("f1")
    f2 = var("f2")

    print
    hx ^= 0
    hy ^= 0
    hz ^= 0

    print
    begin_block("switch(p) ")
    for j in range(1, p_max + 1):
        print "#if FMM_P_MAX >= %i" % j
    for j in range(p_max, 0, -1):
        print "\tcase %i:" % j
        cx ^= sqrt(float(j * (j - 1))) * L[Re(j, 0)] * Y[Re(j - 1, 1)]
        cy ^= sqrt(float(j * (j - 1))) * L[Re(j, 0)] * Y[Im(j - 1, 1)]
        cz ^= j * L[Re(j, 0)] * Y[Re(j - 1, 0)]

        for k in range(1, j + 1):
            if k <= j - 2:
                f1 ^= sqrt(float((j - k) * (j - k - 1)))
                f2 ^= sqrt(float((j + k) * (j + k - 1)))
                cx ^= cx + f1*(L[Re(j,k)]*Y[Re(j-1,k+1)] - L[Im(j,k)]*Y[Im(j-1,k+1)])\
                     + f2*(L[Im(j,k)]*Y[Im(j-1,k-1)] - L[Re(j,k)]*Y[Re(j-1,k-1)])
                cy ^= cy + f1*(L[Im(j,k)]*Y[Re(j-1,k+1)] + L[Re(j,k)]*Y[Im(j-1,k+1)])\
                     + f2*(L[Im(j,k)]*Y[Re(j-1,k-1)] + L[Re(j,k)]*Y[Im(j-1,k-1)])
            else:
                cx ^= cx - sqrt(float(
                    (j + k) *
                    (j + k - 1))) * (L[Re(j, k)] * Y[Re(j - 1, k - 1)] -
                                     L[Im(j, k)] * Y[Im(j - 1, k - 1)])
                cy ^= cy + sqrt(float(
                    (j + k) *
                    (j + k - 1))) * (L[Im(j, k)] * Y[Re(j - 1, k - 1)] +
                                     L[Re(j, k)] * Y[Im(j - 1, k - 1)])

            cz ^= cz + 2.0 * sqrt(float(
                (j + k) * (j - k))) * (L[Re(j, k)] * Y[Re(j - 1, k)] -
                                       L[Im(j, k)] * Y[Im(j - 1, k)])
        hx ^= hx + scale[j] * cx
        hy ^= hy + scale[j] * cy
        hz ^= hz + scale[j] * cz
        print "#endif /* FMM_P_MAX >= %i */" % j
    end_block()

    print '\t*x = hx;'
    print '\t*y = hy;'
    print '\t*z = hz;'

    end_block()
    print