def init_default_hrss(agg=semsim.agg_bma_max): go_onto = godb.load_go_obo() go_is_a_g = godb.onto_rel_graph(go_onto) ic = semsim.init_ic(go_onto, get_curated_frequencies_path()) return semsim.HRSS(agg=agg, onto=go_onto, rel_g=go_is_a_g, ic=ic)
def init_default_mica_dissim(agg=semsim.agg_bma_min): onto = godb.load_go_obo() go_is_a_g = godb.onto_rel_graph(go_onto) ic = semsim.init_ic(go_onto, get_curated_frequencies_path()) return semsim.MICADissim(agg=agg, onto=onto, rel_g=go_is_a_g, ic=ic)
writer.writerow(('protein1', 'protein2', 'biological_process', 'cellular_component', 'molecular_function')) for i in range(len(annotations)): for j in range(len(annotations)): if np.any(comparison_mat[:, i, j] != 0): writer.writerow( (annotations[i][0], annotations[j][0], comparison_mat[0, i, j], comparison_mat[1, i, j], comparison_mat[2, i, j])) if __name__ == '__main__': cmd = sys.argv[1] go_onto = godb.load_go_obo() go_is_a_g = godb.onto_rel_graph(go_onto) evidence_codes = godb.get_curated_evidence_codes() assert len(list(nx.weakly_connected_components(go_is_a_g))) == 3 if cmd == 'alternatives': go_list_path = sys.argv[2] output_path = sys.argv[3] go_list = load_go_list(open_arg_file(go_list_path, 'r')) alternatives = find_valid_go_alternatives(go_list, go_onto, go_is_a_g, evidence_codes) writer = csv.writer(open_arg_file(output_path, 'w+'), delimiter='\t') writer.writerows(alternatives)