Exemple #1
0
    def initialize_generator(self, discriminator, *inputs):

        if len(inputs) != 2:
            raise ValueError('this generator is supposed to get two inputs.'
                             ' the message and the key.')

        message_input, key_input = inputs

        if self.tie_alice_and_bob:

            if self.alice_share_bitwise_weights != self.bob_share_bitwise_weights:
                raise ValueError('bob and alice are tied however they do not '
                                 'have the same weight sharing settings.')

            enc_dec = ElementWise(
                self.alice_bitwise_latent_dims,
                activation='tanh',
                share_element_weights=self.alice_share_bitwise_weights)

            alice_encryption = Flatten()(enc_dec([message_input, key_input]))

            bob_decryption = Flatten(name='decryption')(enc_dec(
                [alice_encryption, key_input]), )

        else:

            alice_encryption = Flatten(name='decryption')(ElementWise(
                self.bob_bitwise_latent_dims,
                activation='tanh',
                share_element_weights=self.bob_share_bitwise_weights)(
                    [message_input, key_input]), )

            bob_decryption = Flatten(name='decryption')(ElementWise(
                self.bob_bitwise_latent_dims,
                activation='tanh',
                share_element_weights=self.bob_share_bitwise_weights)(
                    [alice_encryption, key_input]), )

        eves_opinion = discriminator([message_input, alice_encryption])

        alice = Model(inputs=inputs, outputs=alice_encryption)
        alice_bob = Model(inputs=inputs,
                          outputs=[bob_decryption, eves_opinion])

        def discriminator_loss(y_true, y_pred):
            return K.abs(0.5 - K.mean(y_pred))

        alice_bob.compile(optimizer=Adam(),
                          loss=[mean_absolute_error, binary_crossentropy])

        return alice_bob, alice
    def initialize_model(self):

        message_input = Input(shape=(self.message_length,), name='message_input')
        possible_ciphertext_input = Input(shape=(self.message_length,), name='possible_ciphertext_input')

        bitwise_function = Flatten()(
            ElementWise([8, 1], activation='tanh')([
                message_input,
                possible_ciphertext_input
            ])
        )

        dense = Dense(
            self.message_length,
            activation='relu'
        )(bitwise_function)

        pred = Dense(
            1,
            activation='sigmoid'
        )(dense)

        model = Model(inputs=[message_input, possible_ciphertext_input], outputs=pred)
        model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])

        self.model = model

        return [model]
Exemple #3
0
    def initialize_discriminator(self, *inputs):

        if len(inputs) != 2:
            raise ValueError(
                'this discriminator is supposed to get two inputs.'
                'the message and the key.')

        message_input = inputs[0]
        possible_ciphertext_input = inputs[1]

        bitwise_function = Flatten()(ElementWise(
            self.eve_bitwise_latent_dims,
            activation='tanh',
            share_element_weights=self.eve_share_bitwise_weights)(
                [message_input, possible_ciphertext_input]))

        dense = Dense(self.eve_latent_dim[0],
                      activation='relu')(bitwise_function)

        for units in self.eve_latent_dim[1:]:
            dense = Dense(units, activation='relu')(dense)

        pred = Dense(1, activation='sigmoid')(dense)

        model = Model(inputs=inputs, outputs=pred)
        model.compile(optimizer=Adam(),
                      loss='binary_crossentropy',
                      metrics=['acc'])

        return model
Exemple #4
0
    def initialize_generator(self, discriminator, *inputs):

        if len(inputs) != 2:
            raise ValueError('this generator is supposed to get two inputs.'
                             ' the message and the key.')

        message_input, key_input = inputs

        alice_encryption = Flatten()(
            ElementWise(self.alice_bitwise_latent_dims, activation='tanh',
                        share_element_weights=self.alice_share_bitwise_weights)([
                message_input,
                key_input
            ])
        )

        bob_decryption = Flatten(name='decryption')(
            ElementWise(self.bob_bitwise_latent_dims, activation='tanh',
                        share_element_weights=self.bob_share_bitwise_weights)([
                alice_encryption,
                key_input
            ]),
        )

        eves_opinion = discriminator([message_input, alice_encryption])

        alice = Model(inputs=inputs, outputs=alice_encryption)
        alice_bob = Model(inputs=inputs, outputs=[bob_decryption, eves_opinion])

        def discriminator_loss(y_true, y_pred):
            return K.abs(0.5 - binary_accuracy(y_true, y_pred)) ** 2

        alice_bob.compile(optimizer=Adam(lr=0.0008),
                          loss=[mean_absolute_error, discriminator_loss])

        return alice_bob, alice
Exemple #5
0
    def initialize_model(self):

        input_1 = Input(shape=(self.input_length, ), name='input_1')
        input_2 = Input(shape=(self.input_length, ), name='input_2')

        # reshape = Reshape((-1, 1))
        # ORIGINAL BITWISE FUNCTION IMPLEMENTATION
        #
        # bitwise_function = Flatten()(
        #     TimeDistributed(
        #         Dense(1, activation='tanh')
        #     )(LocallyConnected1D(
        #             self.latent_dim,
        #             kernel_size=2,
        #             strides=2,
        #             activation='relu'
        #         )(reshape(
        #             Intertwine()([
        #                 input_1,
        #                 input_2
        #             ]))
        #         )
        #     )
        # )

        bitwise_function = Flatten()(ElementWise(
            [self.latent_dim, 1],
            activation=['relu', 'tanh'],
            share_element_weights=True)([input_1, input_2]))

        model = Model(inputs=[input_1, input_2], outputs=bitwise_function)
        model.compile(optimizer=Adam(), loss=mean_absolute_error)

        self.model = model

        if self.verbose:
            model.summary()

        return [model]