def save_pedestrians(self, pedestrians): train_pedestrians, val_pedestrians = ProcessData.save_pedestrians( self, pedestrians) def chunks(l, n): for i in xrange(0, len(l), n): yield l[i:i + n] for pedestrians, data_file_func in [ (train_pedestrians, self.train_data_file), (val_pedestrians, self.val_data_file) ]: inputs = list(itertools.chain(*[p.inputs for p in pedestrians])) outputs = list(itertools.chain(*[p.outputs for p in pedestrians])) for i, (input_chunk, output_chunk) in enumerate( zip(chunks(inputs, self.params['features_per_file']), chunks(outputs, self.params['features_per_file']))): fname = data_file_func(i) features = [{ 'fname': ProcessDataNN._bytes_feature('{0}_{1}'.format( os.path.splitext(os.path.basename(fname))[0], j)), 'input': ProcessDataNN._floatlist_feature(np.ravel(input).tolist()), 'output': ProcessDataNN._floatlist_feature( np.ravel(output).tolist()) } for j, (input, output) in enumerate(zip(input_chunk, output_chunk))] self.save_tfrecord(fname, features) return train_pedestrians, val_pedestrians
def __init__(self, folder, params): ProcessData.__init__(self, folder, params)
def save_pedestrians(self, pedestrians): train_pedestrians, val_pedestrians = ProcessData.save_pedestrians( self, pedestrians) return train_pedestrians, val_pedestrians