Exemple #1
0
    def test_empty_class_2d(self):
        num_classes = 2
        M = np.array([[0., 1.], [1., 0.]])
        # define 2d examples
        target = torch.tensor([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0],
                               [0, 0, 0, 0]])
        if torch.cuda.is_available():
            target = target.cuda()

        # add another dimension corresponding to the batch (batch size = 1 here)
        target = target.unsqueeze(0)  # shape (1, H, W)
        pred_very_good = 1000 * F.one_hot(
            target, num_classes=num_classes).permute(0, 3, 1, 2).float()
        pred_very_poor = 1000 * F.one_hot(
            1 - target, num_classes=num_classes).permute(0, 3, 1, 2).float()

        # initialize the loss
        loss = GeneralizedWassersteinDiceLoss(dist_matrix=M)

        # loss for pred_very_good should be close to 0
        loss_good = float(loss.forward(pred_very_good, target).cpu())
        self.assertAlmostEqual(loss_good, 0., places=3)

        # loss for pred_very_poor should be close to 1
        loss_poor = float(loss.forward(pred_very_poor, target).cpu())
        self.assertAlmostEqual(loss_poor, 1., places=3)
Exemple #2
0
    def test_different_target_data_type(self):
        """
        Test if the loss is compatible with all the integer types
        for the target segmentation.
        """
        M = np.array([[0., 1.], [1., 0.]])
        # define 2d examples
        target = torch.tensor([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0],
                               [0, 0, 0, 0]])

        if torch.cuda.is_available():
            target = target.cuda()

        # add another dimension corresponding to the batch (batch size = 1 here)
        target = target.unsqueeze(0)  # shape (1, H, W)
        pred_very_good = 1000 * F.one_hot(target, num_classes=2).permute(
            0, 3, 1, 2).float()

        target_uint8 = target.to(torch.uint8)
        target_int8 = target.to(torch.int8)
        target_short = target.short()
        target_int = target.int()
        target_long = target.long()
        target_list = [
            target_uint8, target_int8, target_short, target_int, target_long
        ]

        # initialize the loss
        loss = GeneralizedWassersteinDiceLoss(dist_matrix=M)

        # The test should work whatever integer type is used
        for t in target_list:
            # the loss for pred_very_good should be close to 0
            loss_good = float(loss.forward(pred_very_good, t).cpu())
            self.assertAlmostEqual(loss_good, 0., places=3)
Exemple #3
0
    def test_bin_seg_3d(self):
        M = np.array([[0., 1.], [1., 0.]])
        # define 3d examples
        target = torch.tensor([
            # raw 0
            [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],
            # raw 1
            [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],
            # raw 2
            [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]]
        ])
        if torch.cuda.is_available():
            target = target.cuda()

        # add another dimension corresponding to the batch (batch size = 1 here)
        target = target.unsqueeze(0)  # shape (1, H, W, D)
        pred_very_good = 1000 * F.one_hot(target, num_classes=2).permute(
            0, 4, 1, 2, 3).float()
        pred_very_poor = 1000 * F.one_hot(1 - target, num_classes=2).permute(
            0, 4, 1, 2, 3).float()

        for w_mode in SUPPORTED_WEIGHTING:
            # initialize the loss
            loss = GeneralizedWassersteinDiceLoss(dist_matrix=M,
                                                  weighting_mode=w_mode)

            # mean dice loss for pred_very_good should be close to 0
            loss_good = float(loss.forward(pred_very_good, target).cpu())
            self.assertAlmostEqual(loss_good, 0., places=3)

            # mean dice loss for pred_very_poor should be close to 1
            loss_poor = float(loss.forward(pred_very_poor, target).cpu())
            self.assertAlmostEqual(loss_poor, 1., places=3)
Exemple #4
0
    def test_convergence(self):
        """
        The goal of this test is to assess if the gradient of the loss function
        is correct by testing if we can train a one layer neural network
        to segment one image.
        We verify that the loss is decreasing in almost all SGD steps.
        """
        M = np.array([[0., 1.], [1., 0.]])
        learning_rate = 0.01
        max_iter = 50

        # define a simple 3d example
        target_seg = torch.tensor([
            # raw 0
            [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],
            # raw 1
            [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],
            # raw 2
            [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]]
        ])
        if torch.cuda.is_available():
            target_seg = target_seg.cuda()
        target_seg = torch.unsqueeze(target_seg, dim=0)
        image = 12 * target_seg + 27
        image = image.float()
        num_classes = 2
        num_voxels = 3 * 4 * 4

        # define a one layer model
        class OnelayerNet(nn.Module):
            def __init__(self):
                super(OnelayerNet, self).__init__()
                self.layer = nn.Linear(num_voxels, num_voxels * num_classes)

            def forward(self, x):
                x = x.view(-1, num_voxels)
                x = self.layer(x)
                x = x.view(-1, num_classes, 3, 4, 4)
                return x

        # initialise the network
        net = OnelayerNet()
        if torch.cuda.is_available():
            net = net.cuda()

        # initialize the loss
        loss = GeneralizedWassersteinDiceLoss(dist_matrix=M)

        # initialize an SGD
        optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)

        # initial difference between pred and target
        pred_start = torch.argmax(net(image), dim=1)
        diff_start = torch.norm(pred_start.float() - target_seg.float())

        loss_history = []
        # train the network
        for _ in range(max_iter):
            # set the gradient to zero
            optimizer.zero_grad()

            # forward pass
            output = net(image)
            loss_val = loss(output, target_seg)

            # backward pass
            loss_val.backward()
            optimizer.step()

            # stats
            loss_history.append(loss_val.item())

        # difference between pred and target after training
        pred_end = torch.argmax(net(image), dim=1)
        diff_end = torch.norm(pred_end.float() - target_seg.float())

        # count the number of SGD steps in which the loss decreases
        num_decreasing_steps = 0
        for i in range(len(loss_history) - 1):
            if loss_history[i] > loss_history[i + 1]:
                num_decreasing_steps += 1
        decreasing_steps_ratio = float(num_decreasing_steps) / (
            len(loss_history) - 1)

        # verify that the loss is decreasing for sufficiently many SGD steps
        self.assertTrue(decreasing_steps_ratio > 0.9)

        # check that the predicted segmentation has improved
        self.assertGreater(diff_start, diff_end)