Exemple #1
0
def calculate_imitation_metric(file_name):
    angles = get_data()
    demos = [angles["Lhip"], angles["Lknee"], angles["Lankle"]]
    runner = TPGMMRunner.TPGMMRunner(file_name)
    path = runner.run()
    print(path[:,0])


    alpha = 1.0
    manhattan_distance = lambda x, y: abs(x - y)

    costs = []
    for i in range(3):
        imitation = path[:, i]
        T = len(imitation)
        M = len(demos[i])
        metric = 0.0
        t = []
        t.append(1.0)
        for k in range(1, T):
            t.append(t[k - 1] - alpha * t[k - 1] * 0.01)  # Update of decay term (ds/dt=-alpha s) )
        t = np.array(t)

        for m in range(M):
            d, cost_matrix, acc_cost_matrix, path_im = dtw(imitation, demos[i][m], dist=manhattan_distance)
            data_warp = [demos[i][m][path_im[1]][:imitation.shape[0]]]
            coefs = poly.polyfit(t, data_warp[0], 20)
            ffit = poly.Polynomial(coefs)
            y_fit = ffit(t)
            metric += np.sum(abs(y_fit - imitation.flatten()))

        costs.append(metric / (M * T))
        print("cost ")
        print(costs)
    return costs
Exemple #2
0
def get_gmm(file_name):
    font = {'family': 'normal',
            'weight': 'bold',
            'size': 30}

    matplotlib.rc('font', **font)

    nb_states = 10

    runner = GMMRunner.GMMRunner(file_name)

    fig0, ax = plt.subplots(3,sharex=True)

    sIn = runner.get_sIn()
    tau = runner.get_tau()
    l = runner.get_length()
    motion = runner.get_motion()
    mu = runner.get_mu()
    sigma = runner.get_sigma()
    currF = runner.get_expData()

    # plot the forcing functions
    angles = get_data()
    for i in range(len(angles["Lhip"])):
        ax[0].plot(sIn, tau[1, i * l: (i + 1) * l].tolist(), color="b")
        ax[1].plot(sIn, tau[2, i * l: (i + 1) * l].tolist(), color="b")
        ax[2].plot(sIn, tau[3, i * l: (i + 1) * l].tolist(), color="b")

    ax[0].plot(sIn, currF[0].tolist(), color="y", linewidth=5)
    ax[1].plot(sIn, currF[1].tolist(), color="y", linewidth=5)
    ax[2].plot(sIn, currF[2].tolist(), color="y", linewidth=5)

    sigma0 = sigma[:, :2, :2]
    sigma1 = sigma[:, :3, :2]
    sigma2 = sigma[:, :4, :2]

    sigma1 = np.delete(sigma1, 1, axis=1)
    sigma2 = np.delete(sigma2, 1, axis=1)
    sigma2 = np.delete(sigma2, 1, axis=1)

    p = plot_gmm(Mu=np.array([mu[0,:], mu[1,:] ]), Sigma=sigma0, ax=ax[0])
    p = plot_gmm(Mu=np.array([mu[0, :], mu[2, :]]), Sigma=sigma1, ax=ax[1])
    p = plot_gmm(Mu=np.array([mu[0, :], mu[3, :]]), Sigma=sigma2, ax=ax[2])
    fig0.suptitle('Forcing Function')

    ax[2].set_xlabel('S')
    ax[0].set_ylabel('F')
    ax[1].set_ylabel('F')
    ax[2].set_ylabel('F')

    # fig0.tight_layout(pad=1.0, h_pad=0.15, w_pad=None, rect=None)
    ax[0].set_title("Left Hip")
    ax[1].set_title("Left Knee")
    ax[2].set_title("Left Ankle")

    plt.show()
Exemple #3
0
def gen_traj(file_name=None):
    angles = get_data()
    # traj = [angles["Lhip"], angles["Lknee"], angles["Lankle"], angles["Rhip"], angles["Rknee"], angles["Rankle"]]

    min_length = 5000000
    for arr in angles["Rhip"]:
        min_length = min(min_length, len(arr))
    matplotlib.rcParams.update({'font.size': 25})

    fig, ax = plt.subplots(3)
    fig.tight_layout(pad=1.0, h_pad=0.15, w_pad=None, rect=None)
    ax[0].set_title("Left Hip")
    ax[1].set_title("Left Knee")
    ax[2].set_title("Left Ankle")
    # ax[0, 1].set_title("Right Hip")
    # ax[1, 1].set_title("Right Knee")
    # ax[2, 1].set_title("Right Ankle")

    ax[2].set_xlabel("Gait %")
    #ax[2, 1].set_xlabel("Gait %")

    ax[0].set_ylabel("Angle(deg)")
    ax[1].set_ylabel("Angle(deg)")
    ax[2].set_ylabel("Angle(deg)")


    for i in range(len(angles["Rhip"])):
        ax[0].plot(np.linspace(0, 100, len(angles["Lhip"][i])), np.rad2deg(angles["Lhip"][i]))
        ax[1].plot(np.linspace(0, 100, len(angles["Lknee"][i])), np.rad2deg(angles["Lknee"][i]))
        ax[2].plot(np.linspace(0, 100, len(angles["Lankle"][i])), np.rad2deg( angles["Lankle"][i]))
        # ax[0, 1].plot(np.linspace(0, 100, len(angles["Rhip"][i])), np.rad2deg(angles["Rhip"][i]))
        # ax[1, 1].plot(np.linspace(0, 100, len(angles["Rknee"][i])), np.rad2deg(angles["Rknee"][i]))
        # ax[2, 1].plot(np.linspace(0, 100, len(angles["Rankle"][i])), np.rad2deg(angles["Rankle"][i]))

    if file_name:
        runner = TPGMMRunner.TPGMMRunner(file_name + ".pickle")
        path = np.array(runner.run())
        ax[0].plot( np.linspace(0, 100, len(path[:, 0] )), np.rad2deg(path[:, 0]), linewidth=4)
        ax[1].plot( np.linspace(0, 100, len(path[:, 1] )), np.rad2deg(path[:, 1]), linewidth=4)
        ax[2].plot( np.linspace(0, 100, len(path[:, 2] )), np.rad2deg(path[:, 2]), linewidth=4)
    #     ax[0, 1].plot( np.linspace(0, 100, len(path[:, 3] )), np.rad2deg(path[:, 3]), linewidth=2)
    #     ax[1, 1].plot( np.linspace(0, 100, len(path[:, 4] )), np.rad2deg(path[:, 4]), linewidth=2)
    #     ax[2, 1].plot( np.linspace(0, 100, len(path[:, 5] )), np.rad2deg(path[:, 5]), linewidth=2)
    #
    plt.show()
Exemple #4
0
def train_model(file_name, bins=15, save=True):
    angles = get_data()
    traj = [angles["Lhip"], angles["Lknee"], angles["Lankle"], angles["Rhip"], angles["Rknee"], angles["Rankle"]]
    trainer = TPGMMTrainer.TPGMMTrainer(demo=traj, file_name=file_name, n_rf=bins, dt=0.01, reg=[1e-3, 1e-3, 1e-3, 1e-3, 1e-3, 1e-3],
                                                                                               poly_degree=[20, 20, 20, 20, 20, 20])
    return trainer.train(save)