Exemple #1
0
def run_tensorflow():
    """
    [summary] This is needed for tensorflow to free up my gpu ram...
    """

    gpus = tf.config.experimental.list_physical_devices("GPU")
    if gpus:
        try:
            # Currently, memory growth needs to be the same across GPUs
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)
            logical_gpus = tf.config.experimental.list_logical_devices("GPU")
            print(len(gpus), "Physical GPUs,", len(logical_gpus),
                  "Logical GPUs")
        except RuntimeError as e:
            # Memory growth must be set before GPUs have been initialized
            print(e)

    AnimeCleanData = getAnimeCleanData(BATCH_SIZE=1)
    CelebAData = getCelebaData(BATCH_SIZE=1)

    AnimeCleanData_iter = iter(AnimeCleanData)
    CelebAData_iter = iter(CelebAData)

    logdir = "./logs/train_data/" + datetime.now().strftime("%Y%m%d-%H%M%S")
    file_writer = tf.summary.create_file_writer(logdir)

    generator_to_anime_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
    generator_to_human_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
    generator_anime_upscale_optimizer = tf.keras.optimizers.Adam(2e-4,
                                                                 beta_1=0.5)
    discriminator_human_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
    discriminator_anime_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
    discriminator_anime_upscale_optimizer = tf.keras.optimizers.Adam(
        2e-4, beta_1=0.5)

    generator_to_anime = GeneratorV2()
    generator_to_human = GeneratorV2()

    generator_anime_upscale = UpsampleGenerator()

    # input: Batch, 256,256,3
    discriminator_human = W_Discriminator()
    discriminator_anime = W_Discriminator()

    discriminator_anime_upscale = W_Discriminator()

    checkpoint_path = "./checkpoints/train"

    ckpt = tf.train.Checkpoint(
        generator_to_anime=generator_to_anime,
        generator_to_human=generator_to_human,
        generator_anime_upscale=generator_anime_upscale,  # *
        discriminator_human=discriminator_human,
        discriminator_anime=discriminator_anime,
        discriminator_anime_upscale=discriminator_anime_upscale,  # *
        generator_to_anime_optimizer=generator_to_anime_optimizer,
        generator_to_human_optimizer=generator_to_human_optimizer,
        generator_anime_upscale_optimizer=generator_anime_upscale_optimizer,  # *
        discriminator_human_optimizer=discriminator_human_optimizer,
        discriminator_anime_optimizer=discriminator_anime_optimizer,
        discriminator_anime_upscale_optimizer=
        discriminator_anime_upscale_optimizer,  # *
    )

    ckpt_manager = tf.train.CheckpointManager(ckpt,
                                              checkpoint_path,
                                              max_to_keep=5)

    # if a checkpoint exists, restore the latest checkpoint.
    if ckpt_manager.latest_checkpoint:
        ckpt.restore(ckpt_manager.latest_checkpoint)
        print("Latest checkpoint restored!!")

    @tf.function
    def init_pool(AnimeBatchImage, BigAnimeBatchImage, CelebaBatchImage):
        # store 30 images per type for training tool
        fake_anime_pool = generator_to_anime(CelebaBatchImage)
        cycled_anime_pool = generator_to_anime(
            generator_to_anime(AnimeBatchImage), )
        same_anime_pool = generator_to_anime(CelebaBatchImage)

        fake_human_pool = generator_to_human(AnimeBatchImage)
        cycled_human_pool = generator_to_human(
            generator_to_anime(CelebaBatchImage), )
        same_human_pool = generator_to_human(AnimeBatchImage)

        fake_anime_upscale_pool = generator_anime_upscale(fake_anime_pool)
        cycled_anime_upscale_pool = generator_anime_upscale(cycled_anime_pool)
        same_anime_upscale_pool = generator_anime_upscale(same_anime_pool)

        data_pools = [
            fake_anime_pool,
            cycled_anime_pool,
            same_anime_pool,
            fake_human_pool,
            cycled_human_pool,
            same_human_pool,
            fake_anime_upscale_pool,
            cycled_anime_upscale_pool,
            same_anime_upscale_pool,
        ]
        return data_pools

    AnimeBatchImage, BigAnimeBatchImage = next(AnimeCleanData_iter)
    CelebaBatchImage = next(CelebAData_iter)
    data_pools = init_pool(AnimeBatchImage, BigAnimeBatchImage,
                           CelebaBatchImage)

    def add_data_to_pool(pool, new_data, pool_size=50):
        pool = new_data
        # tf.random.shuffle(pool)
        # pool = pool[:pool_size, :, :, :]
        # tf.concat([pool, new_data], 0)

    def get_data_from_pool(pool, batch_size=8):
        return pool[:batch_size, :, :, :]

    # out: Batch, 16, 16, 1
    # x is human, y is anime
    @tf.function
    def trainstep_G(real_human, real_anime, big_anime):
        with tf.GradientTape(persistent=True) as tape:
            fake_anime = generator_to_anime(real_human, training=True)
            cycled_human = generator_to_human(fake_anime, training=True)

            fake_human = generator_to_human(real_anime, training=True)
            cycled_anime = generator_to_anime(fake_human, training=True)

            same_human = generator_to_human(real_human, training=True)
            same_anime = generator_to_anime(real_anime, training=True)

            disc_fake_human = discriminator_human(fake_human, training=True)
            disc_fake_anime = discriminator_anime(fake_anime, training=True)

            fake_anime_upscale = generator_anime_upscale(fake_anime,
                                                         training=True)
            real_anime_upscale = generator_anime_upscale(real_anime,
                                                         training=True)

            cycled_anime_upscale = generator_anime_upscale(cycled_anime,
                                                           training=True)
            same_anime_upscale = generator_anime_upscale(same_anime,
                                                         training=True)

            disc_fake_upscale = discriminator_anime_upscale(fake_anime_upscale,
                                                            training=True)
            disc_real_upscale = discriminator_anime_upscale(real_anime_upscale,
                                                            training=True)
            # calculate the loss
            gen_anime_loss = w_g_loss(disc_fake_anime)
            gen_human_loss = w_g_loss(disc_fake_human)

            total_cycle_loss = cycle_loss(real_human,
                                          cycled_human) + cycle_loss(
                                              real_anime, cycled_anime)

            # Total generator loss = adversarial loss + cycle loss
            total_gen_anime_loss = (gen_anime_loss * 1e3 + total_cycle_loss +
                                    identity_loss(real_anime, same_anime))

            tf.print("gen_anime_loss*1e3", gen_anime_loss * 1e3)
            tf.print("total_cycle_loss", total_cycle_loss)
            tf.print("identity_loss", identity_loss(real_anime, same_anime))
            tf.print("--------------------------")
            total_gen_human_loss = (gen_human_loss * 1e3 + total_cycle_loss +
                                    identity_loss(real_human, same_human))

            gen_upscale_loss = (
                w_g_loss(disc_fake_upscale) * 1e3
                # + w_g_loss(disc_cycle_upscale)
                # + w_g_loss(disc_same_upscale)
                + identity_loss(big_anime, real_anime_upscale) * 1e-6
                # + identity_loss(big_anime, same_anime_upscale)
            )

            tf.print("w_g_loss(disc_fake_upscale)",
                     w_g_loss(disc_fake_upscale))
            tf.print("identity_loss(big_anime, disc_real_upscale)",
                     identity_loss(big_anime, disc_real_upscale))

            # tf.print("w_g_loss(disc_cycle_upscale)", w_g_loss(disc_cycle_upscale))
            # tf.print("w_g_loss(disc_same_upscale)", w_g_loss(disc_same_upscale))
            # tf.print(
            #     "identity_loss(big_anime, cycled_anime_upscale)",
            #     identity_loss(big_anime, cycled_anime_upscale),
            # )
            # tf.print(
            #     "identity_loss(big_anime, same_anime_upscale)",
            #     identity_loss(big_anime, same_anime_upscale),
            # )

        generator_to_anime_gradients = tape.gradient(
            total_gen_anime_loss, generator_to_anime.trainable_variables)
        generator_to_human_gradients = tape.gradient(
            total_gen_human_loss, generator_to_human.trainable_variables)
        generator_upscale_gradients = tape.gradient(
            gen_upscale_loss, generator_anime_upscale.trainable_variables)
        generator_to_anime_optimizer.apply_gradients(
            zip(generator_to_anime_gradients,
                generator_to_anime.trainable_variables))
        generator_to_human_optimizer.apply_gradients(
            zip(generator_to_human_gradients,
                generator_to_human.trainable_variables))
        generator_anime_upscale_optimizer.apply_gradients(
            zip(generator_upscale_gradients,
                generator_anime_upscale.trainable_variables))

        return [
            real_human,
            real_anime,
            fake_anime,
            cycled_anime,
            same_anime,
            fake_human,
            cycled_human,
            same_human,
            fake_anime_upscale,
            cycled_anime_upscale,
            same_anime_upscale,
            gen_anime_loss,
            gen_human_loss,
            total_gen_anime_loss,
            total_gen_human_loss,
            gen_upscale_loss,
        ]

    @tf.function
    def trainstep_D(
        real_human,
        real_anime,
        big_anime,
        fake_anime,
        cycled_anime,
        same_anime,
        fake_human,
        cycled_human,
        same_human,
        fake_anime_upscale,
        cycled_anime_upscale,
        same_anime_upscale,
    ):
        with tf.GradientTape(persistent=True) as tape:
            disc_real_human = discriminator_human(real_human, training=True)
            disc_real_anime = discriminator_anime(real_anime, training=True)

            disc_fake_human = discriminator_human(fake_human, training=True)
            disc_fake_anime = discriminator_anime(fake_anime, training=True)

            disc_real_big = discriminator_anime_upscale(big_anime,
                                                        training=True)
            disc_fake_upscale = discriminator_anime_upscale(fake_anime_upscale,
                                                            training=True)
            # disc_same_upscale = discriminator_anime_upscale(
            #     same_anime_upscale, training=True
            # )

            discriminator_human_gradient_penalty = gradient_penalty(
                functools.partial(discriminator_human, training=True),
                real_human,
                fake_human,
            )
            discriminator_anime_gradient_penalty = gradient_penalty(
                functools.partial(discriminator_anime, training=True),
                real_anime,
                fake_anime,
            )
            discriminator_upscale_gradient_penalty = gradient_penalty(
                functools.partial(discriminator_human, training=True),
                big_anime,
                fake_anime_upscale,
            )

            disc_human_loss = (w_d_loss(disc_real_human, disc_fake_human) +
                               discriminator_human_gradient_penalty)
            disc_anime_loss = (w_d_loss(disc_real_anime, disc_fake_anime) +
                               discriminator_anime_gradient_penalty)
            disc_upscale_loss = (w_d_loss(disc_real_big, disc_fake_upscale) +
                                 discriminator_upscale_gradient_penalty)
            tf.print("disc_real_big", disc_real_big)
            tf.print("disc_fake_upscale", disc_fake_upscale)
            tf.print("disc_upscale_loss", disc_upscale_loss)

        discriminator_human_gradients = tape.gradient(
            disc_human_loss, discriminator_human.trainable_variables)
        discriminator_anime_gradients = tape.gradient(
            disc_anime_loss, discriminator_anime.trainable_variables)
        discriminator_upscale_gradients = tape.gradient(
            disc_upscale_loss, discriminator_anime_upscale.trainable_variables)
        discriminator_human_optimizer.apply_gradients(
            zip(discriminator_human_gradients,
                discriminator_human.trainable_variables))
        discriminator_anime_optimizer.apply_gradients(
            zip(discriminator_anime_gradients,
                discriminator_anime.trainable_variables))
        discriminator_anime_upscale_optimizer.apply_gradients(
            zip(
                discriminator_upscale_gradients,
                discriminator_anime_upscale.trainable_variables,
            ))

    def process_data_for_display(input_image):
        return input_image * 0.5 + 0.5

    counter = 0
    i = -1

    print_string = [
        "real_human",
        "real_anime",
        "fake_anime",
        "cycled_anime",
        "same_anime",
        "fake_human",
        "cycled_human",
        "same_human",
        "fake_anime_upscale",
        "cycled_anime_upscale",
        "same_anime_upscale",
        "gen_anime_loss",
        "gen_human_loss",
        "total_gen_anime_loss",
        "total_gen_human_loss",
        "gen_upscale_loss",
    ]

    while True:
        i = i + 1
        counter = counter + 1
        AnimeBatchImage, BigAnimeBatchImage = next(AnimeCleanData_iter)
        CelebaBatchImage = next(CelebAData_iter)
        print(counter)

        # for j in range(3):
        result = trainstep_G(CelebaBatchImage, AnimeBatchImage,
                             BigAnimeBatchImage)
        for j in range(9):
            add_data_to_pool(data_pools[j], result[2 + j])
        trainstep_D(CelebaBatchImage, AnimeBatchImage, BigAnimeBatchImage,
                    *[get_data_from_pool(x) for x in data_pools])
        # print("generator_to_anime.count_params()",generator_to_anime.count_params() )
        # print("generator_to_human.count_params()",generator_to_human.count_params() )
        # print("generator_anime_upscale.count_params()",generator_anime_upscale.count_params() )
        # print("discriminator_human.count_params()",discriminator_human.count_params() )
        # print("discriminator_anime.count_params()",discriminator_anime.count_params() )
        # print("discriminator_anime_upscale.count_params()",discriminator_anime_upscale.count_params() )

        if not (i % 5):
            with file_writer.as_default():
                for j in range(11):
                    tf.summary.image(print_string[j],
                                     process_data_for_display(result[j]),
                                     step=i)
                for j in range(11, len(print_string)):
                    tf.summary.scalar(print_string[j], result[j], step=i)
            ckpt_manager.save()
def run_tensorflow():
    """
    [summary] This is needed for tensorflow to free up my gpu ram...
    """

    gpus = tf.config.experimental.list_physical_devices("GPU")
    if gpus:
        try:
            # Currently, memory growth needs to be the same across GPUs
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)
            logical_gpus = tf.config.experimental.list_logical_devices("GPU")
            print(len(gpus), "Physical GPUs,", len(logical_gpus),
                  "Logical GPUs")
        except RuntimeError as e:
            # Memory growth must be set before GPUs have been initialized
            print(e)

    AnimeCleanData = getAnimeCleanData(BATCH_SIZE=7)
    CelebaData = getCelebaData(BATCH_SIZE=7)

    logdir = "./logs/train_data/" + datetime.now().strftime("%Y%m%d-%H%M%S")
    file_writer = tf.summary.create_file_writer(logdir)

    generator_to_anime_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
    generator_to_human_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)

    generator_anime_upscale_optimizer = tf.keras.optimizers.Adam(2e-4,
                                                                 beta_1=0.5)

    discriminator_human_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
    discriminator_anime_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)

    discriminator_anime_upscale_optimizer = tf.keras.optimizers.Adam(
        2e-4, beta_1=0.5)

    generator_to_anime = GeneratorV2()
    generator_to_human = GeneratorV2()

    generator_anime_upscale = UpsampleGenerator()

    # input: Batch, 256,256,3
    discriminator_human = W_Discriminator()
    discriminator_anime = W_Discriminator()

    discriminator_anime_upscale = W_Discriminator()

    checkpoint_path = "./checkpoints/train"

    ckpt = tf.train.Checkpoint(
        generator_to_anime=generator_to_anime,
        generator_to_human=generator_to_human,
        generator_anime_upscale=generator_anime_upscale,  # *
        discriminator_human=discriminator_human,
        discriminator_anime=discriminator_anime,
        discriminator_anime_upscale=discriminator_anime_upscale,  # *
        generator_to_anime_optimizer=generator_to_anime_optimizer,
        generator_to_human_optimizer=generator_to_human_optimizer,
        generator_anime_upscale_optimizer=generator_anime_upscale_optimizer,  # *
        discriminator_human_optimizer=discriminator_human_optimizer,
        discriminator_anime_optimizer=discriminator_anime_optimizer,
        discriminator_anime_upscale_optimizer=
        discriminator_anime_upscale_optimizer,  # *
    )

    ckpt_manager = tf.train.CheckpointManager(ckpt,
                                              checkpoint_path,
                                              max_to_keep=5)

    # if a checkpoint exists, restore the latest checkpoint.
    if ckpt_manager.latest_checkpoint:
        ckpt.restore(ckpt_manager.latest_checkpoint)
        print("Latest checkpoint restored!!")

    # out: Batch, 16, 16, 1
    # x is human, y is anime
    @tf.function
    def trainstep(real_human, real_anime, big_anime):

        with tf.GradientTape(persistent=True) as tape:

            fake_anime = generator_to_anime(real_human, training=True)
            cycled_human = generator_to_human(fake_anime, training=True)

            print("generator_to_anime", generator_to_anime.count_params())

            fake_human = generator_to_human(real_anime, training=True)
            cycled_anime = generator_to_anime(fake_human, training=True)

            # same_human and same_anime are used for identity loss.
            same_human = generator_to_human(real_human, training=True)
            same_anime = generator_to_anime(real_anime, training=True)

            disc_real_human = discriminator_human(real_human, training=True)
            disc_real_anime = discriminator_anime(real_anime, training=True)
            print("discriminator_human", discriminator_human.count_params())

            disc_fake_human = discriminator_human(fake_human, training=True)
            disc_fake_anime = discriminator_anime(fake_anime, training=True)

            fake_anime_upscale = generator_anime_upscale(fake_anime,
                                                         training=True)
            real_anime_upscale = generator_anime_upscale(real_anime,
                                                         training=True)

            disc_fake_upscale = discriminator_anime_upscale(fake_anime_upscale,
                                                            training=True)

            disc_real_upscale = discriminator_anime_upscale(real_anime_upscale,
                                                            training=True)
            disc_real_big = discriminator_anime_upscale(big_anime,
                                                        training=True)
            # assert()
            # calculate the loss
            gen_anime_loss = w_g_loss(disc_fake_anime)
            gen_human_loss = w_g_loss(disc_fake_human)

            total_cycle_loss = cycle_loss(real_human,
                                          cycled_human) + cycle_loss(
                                              real_anime, cycled_anime)

            # Total generator loss = adversarial loss + cycle loss
            total_gen_anime_loss = (gen_anime_loss + total_cycle_loss +
                                    identity_loss(real_anime, same_anime))

            total_gen_human_loss = (gen_human_loss + total_cycle_loss +
                                    identity_loss(real_human, same_human))

            gen_upscale_loss = (
                w_g_loss(disc_fake_upscale) + w_g_loss(disc_real_upscale)
                # + mse_loss(big_anime, real_anime_upscale) * 0.1
                + identity_loss(big_anime, real_anime_upscale) * 0.3)

            discriminator_human_gradient_penalty = (gradient_penalty(
                functools.partial(discriminator_human, training=True),
                real_human,
                fake_human,
            ) * 10)
            discriminator_anime_gradient_penalty = (gradient_penalty(
                functools.partial(discriminator_anime, training=True),
                real_anime,
                fake_anime,
            ) * 10)
            discriminator_upscale_gradient_penalty = (gradient_penalty(
                functools.partial(discriminator_human, training=True),
                big_anime,
                fake_anime_upscale,
            ) * 5)
            discriminator_upscale_gradient_penalty += (gradient_penalty(
                functools.partial(discriminator_human, training=True),
                big_anime,
                real_anime_upscale,
            ) * 5)

            disc_human_loss = (w_d_loss(disc_real_human, disc_fake_human) +
                               discriminator_human_gradient_penalty)
            disc_anime_loss = (w_d_loss(disc_real_anime, disc_fake_anime) +
                               discriminator_anime_gradient_penalty)
            # # print("ggg",big_anime.shape)
            disc_upscale_loss = w_d_loss(disc_real_big, disc_fake_upscale)
            disc_upscale_loss += (w_d_loss(disc_real_big, disc_real_upscale) +
                                  discriminator_upscale_gradient_penalty)

        generator_to_anime_gradients = tape.gradient(
            total_gen_anime_loss, generator_to_anime.trainable_variables)
        generator_to_human_gradients = tape.gradient(
            total_gen_human_loss, generator_to_human.trainable_variables)
        generator_upscale_gradients = tape.gradient(
            gen_upscale_loss, generator_anime_upscale.trainable_variables)

        discriminator_human_gradients = tape.gradient(
            disc_human_loss, discriminator_human.trainable_variables)
        discriminator_anime_gradients = tape.gradient(
            disc_anime_loss, discriminator_anime.trainable_variables)

        discriminator_upscale_gradients = tape.gradient(
            disc_upscale_loss, discriminator_anime_upscale.trainable_variables)

        generator_to_anime_optimizer.apply_gradients(
            zip(generator_to_anime_gradients,
                generator_to_anime.trainable_variables))

        generator_to_human_optimizer.apply_gradients(
            zip(generator_to_human_gradients,
                generator_to_human.trainable_variables))

        generator_anime_upscale_optimizer.apply_gradients(
            zip(generator_upscale_gradients,
                generator_anime_upscale.trainable_variables))

        discriminator_human_optimizer.apply_gradients(
            zip(discriminator_human_gradients,
                discriminator_human.trainable_variables))

        discriminator_anime_optimizer.apply_gradients(
            zip(discriminator_anime_gradients,
                discriminator_anime.trainable_variables))

        discriminator_anime_upscale_optimizer.apply_gradients(
            zip(
                discriminator_upscale_gradients,
                discriminator_anime_upscale.trainable_variables,
            ))

        return [
            real_human,
            real_anime,
            fake_anime,
            cycled_human,
            fake_human,
            cycled_anime,
            same_human,
            same_anime,
            fake_anime_upscale,
            real_anime_upscale,
            gen_anime_loss,
            gen_human_loss,
            disc_human_loss,
            disc_anime_loss,
            total_gen_anime_loss,
            total_gen_human_loss,
            gen_upscale_loss,
            disc_upscale_loss,
        ]

    def process_data_for_display(input_image):
        return input_image * 0.5 + 0.5

    counter = 0
    i = -1

    while True:
        i = i + 1
        counter = counter + 1
        AnimeBatchImage, BigAnimeBatchImage = next(iter(AnimeCleanData))
        CelebaBatchImage = next(iter(CelebaData))
        print(counter)

        if not (i % 5):

            (
                AnimeTrainImage,
                CelebATrainImage,
                fake_anime,
                cycled_human,
                fake_human,
                cycled_anime,
                same_human,
                same_anime,
                fake_anime_upscale,
                real_anime_upscale,
                gen_anime_loss,
                gen_human_loss,
                disc_human_loss,
                disc_anime_loss,
                total_gen_anime_loss,
                total_gen_human_loss,
                gen_upscale_loss,
                disc_upscale_loss,
            ) = trainstep(CelebaBatchImage, AnimeBatchImage,
                          BigAnimeBatchImage)
            print(type(AnimeTrainImage))
            print(AnimeTrainImage.shape)

            with file_writer.as_default():
                tf.summary.image(
                    "AnimeTrainImage",
                    process_data_for_display(AnimeTrainImage),
                    step=counter,
                )
                tf.summary.image(
                    "CelebATrainImage",
                    process_data_for_display(CelebATrainImage),
                    step=counter,
                )
                tf.summary.image("fake_anime",
                                 process_data_for_display(fake_anime),
                                 step=counter)
                tf.summary.image("cycled_human",
                                 process_data_for_display(cycled_human),
                                 step=counter)
                tf.summary.image("fake_human",
                                 process_data_for_display(fake_human),
                                 step=counter)
                tf.summary.image("cycled_anime",
                                 process_data_for_display(cycled_anime),
                                 step=counter)
                tf.summary.image("same_human",
                                 process_data_for_display(same_human),
                                 step=counter)
                tf.summary.image("same_anime",
                                 process_data_for_display(same_anime),
                                 step=counter)

                tf.summary.image("fake_anime_upscale",
                                 fake_anime_upscale,
                                 step=counter)
                tf.summary.image("real_anime_upscale",
                                 real_anime_upscale,
                                 step=counter)

                tf.summary.scalar("gen_anime_loss",
                                  gen_anime_loss,
                                  step=counter)
                tf.summary.scalar("gen_human_loss",
                                  gen_human_loss,
                                  step=counter)
                tf.summary.scalar("disc_human_loss",
                                  disc_human_loss,
                                  step=counter)
                tf.summary.scalar("disc_anime_loss",
                                  disc_anime_loss,
                                  step=counter)
                tf.summary.scalar("total_gen_anime_loss",
                                  total_gen_anime_loss,
                                  step=counter)
                tf.summary.scalar("total_gen_human_loss",
                                  total_gen_human_loss,
                                  step=counter)
                tf.summary.scalar("gen_upscale_loss",
                                  gen_upscale_loss,
                                  step=counter)
                tf.summary.scalar("disc_upscale_loss",
                                  disc_upscale_loss,
                                  step=counter)

            ckpt_manager.save()
        else:
            # trainstep(CelebaBatchImage, AnimeBatchImage, BigAnimeBatchImage)
            trainstep(CelebaBatchImage, AnimeBatchImage, BigAnimeBatchImage)
Exemple #3
0
def run_tensorflow():
    """
    [summary] This is needed for tensorflow to free up my gpu ram...
    """

    gpus = tf.config.experimental.list_physical_devices("GPU")
    if gpus:
        try:
            # Currently, memory growth needs to be the same across GPUs
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)
            logical_gpus = tf.config.experimental.list_logical_devices("GPU")
            print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
        except RuntimeError as e:
            # Memory growth must be set before GPUs have been initialized
            print(e)

    mixed_precision = tf.keras.mixed_precision.experimental

    policy = mixed_precision.Policy("mixed_float16")
    mixed_precision.set_policy(policy)

    AnimeCleanData = getAnimeCleanData(BATCH_SIZE=batch_size)
    CelebaData = getCelebaData(BATCH_SIZE=batch_size)

    logdir = "./logs/Startrain_data/" + datetime.now().strftime("%Y%m%d-%H%M%S")
    file_writer = tf.summary.create_file_writer(logdir)

    generator_optimizer = mixed_precision.LossScaleOptimizer(
        tf.keras.optimizers.Adam(2e-4, beta_1=0.5), loss_scale="dynamic"
    )

    discriminator_optimizer = mixed_precision.LossScaleOptimizer(
        tf.keras.optimizers.Adam(2e-4, beta_1=0.5), loss_scale="dynamic"
    )

    up_G_optim = mixed_precision.LossScaleOptimizer(
        tf.keras.optimizers.Adam(2e-4, beta_1=0.5), loss_scale="dynamic"
    )
    up_D_optim = mixed_precision.LossScaleOptimizer(
        tf.keras.optimizers.Adam(2e-4, beta_1=0.5), loss_scale="dynamic"
    )
    up_G = UpsampleGenerator()
    up_D = Discriminator()

    generator = GeneratorV2()
    # input: Batch, 256,256,3
    discriminator = StarDiscriminator()

    checkpoint_path = "./checkpoints/StarTrain"

    ckpt = tf.train.Checkpoint(
        generator = generator,
        discriminator = discriminator,
        generator_optimizer = generator_optimizer,
        discriminator_optimizer = discriminator_optimizer,

    )

    ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)

    # if a checkpoint exists, restore the latest checkpoint.
    if ckpt_manager.latest_checkpoint:
        ckpt.restore(ckpt_manager.latest_checkpoint)
        print("Latest checkpoint restored!!")

    # out: Batch, 16, 16, 1
    # x is human, y is anime
    @tf.function
    def trainstep(real_human, real_anime, big_anime):
        with tf.GradientTape(persistent=True) as tape:
            ones = tf.ones_like(real_human)
            neg_ones = tf.ones_like(real_human) * -1

            def get_domain_anime(img):
                return tf.concat([img, ones], 3)

            def get_domain_human(img):
                return tf.concat([img, neg_ones], 3)

            fake_anime = generator(get_domain_anime(real_human), training=True)
            cycled_human = generator(get_domain_human(fake_anime), training=True)

            fake_human = generator(get_domain_human(real_anime), training=True)
            cycled_anime = generator(get_domain_anime(fake_human), training=True)

            # same_human and same_anime are used for identity loss.
            same_human = generator(get_domain_human(real_human), training=True)
            same_anime = generator(get_domain_anime(real_anime), training=True)

            disc_real_human, label_real_human = discriminator(real_human, training=True)
            disc_real_anime, label_real_anime = discriminator(real_anime, training=True)

            disc_fake_human, label_fake_human = discriminator(fake_human, training=True)
            disc_fake_anime, label_fake_anime = discriminator(fake_anime, training=True)

            _, label_cycled_human = discriminator(cycled_human, training=True)
            _, label_cycled_anime = discriminator(cycled_anime, training=True)

            _, label_same_human = discriminator(same_human, training=True)
            _, label_same_anime = discriminator(same_anime, training=True)

            # calculate the loss
            gen_anime_loss = generator_loss(disc_fake_anime)
            gen_human_loss = generator_loss(disc_fake_human)

            total_cycle_loss = cycle_loss(real_human, cycled_human) + cycle_loss(
                real_anime, cycled_anime
            )

            gen_class_loss = (
                discriminator_loss(label_fake_human, label_fake_anime)
                + discriminator_loss(label_cycled_human, label_cycled_anime)
                + discriminator_loss(label_same_human, label_same_anime)
            )

            # Total generator loss = adversarial loss + cycle loss
            total_gen_loss = (
                gen_anime_loss
                + gen_human_loss 
                + gen_class_loss
                + total_cycle_loss * 0.1
                + identity_loss(real_anime, same_anime)
                + identity_loss(real_human, same_human)
            )

            tf.print("gen_anime_loss",gen_anime_loss)
            tf.print("gen_human_loss",gen_human_loss)
            tf.print("gen_class_loss",gen_class_loss)
            tf.print("total_cycle_loss",total_cycle_loss)
            tf.print("identity_loss(real_anime, same_anime)",identity_loss(real_anime, same_anime))
            tf.print("identity_loss(real_human, same_human)",identity_loss(real_human, same_human))

            scaled_total_gen_anime_loss = generator_optimizer.get_scaled_loss(
                total_gen_loss
            )

            disc_human_loss = discriminator_loss(disc_real_human, disc_fake_human)
            disc_anime_loss = discriminator_loss(disc_real_anime, disc_fake_anime)

            # disc_gp_anime = gradient_penalty_star(partial(discriminator, training=True), real_anime,fake_anime )
            # disc_gp_human = gradient_penalty_star(partial(discriminator, training=True), real_human,fake_human )

            disc_loss = disc_human_loss + disc_anime_loss + discriminator_loss(label_real_human,label_real_anime)
            # +disc_gp_anime+disc_gp_human

            scaled_disc_loss = discriminator_optimizer.get_scaled_loss(
                disc_loss
            )

        # Calculate the gradients for generator and discriminator
        generator_gradients =generator_optimizer.get_unscaled_gradients( tape.gradient(
            scaled_total_gen_anime_loss, generator.trainable_variables
        ))
        discriminator_gradients = discriminator_optimizer.get_unscaled_gradients( tape.gradient(
            scaled_disc_loss, discriminator.trainable_variables
        ))

        generator_optimizer.apply_gradients(
            zip(generator_gradients, generator.trainable_variables)
        )

        discriminator_optimizer.apply_gradients(
            zip(discriminator_gradients, discriminator.trainable_variables)
        )

        with tf.GradientTape(persistent=True) as tape:
            real_anime_up = up_G(real_anime)
            fake_anime_up = up_G(fake_anime)

            dis_fake_anime_up = up_D(fake_anime_up)
            dis_real_anime_up = up_D(real_anime_up)
            dis_ori_anime = up_D(big_anime)
            gen_up_loss =  generator_loss(fake_anime_up) + generator_loss(dis_real_anime_up)*0.1
            dis_up_loss = discriminator_loss(dis_ori_anime,dis_fake_anime_up)+discriminator_loss(dis_ori_anime,dis_real_anime_up)*0.1
            scaled_gen_up_loss = up_G_optim.get_scaled_loss(gen_up_loss)
            scaled_disc_loss = up_D_optim.get_scaled_loss(dis_up_loss)

        up_G_gradients =up_G_optim.get_unscaled_gradients( tape.gradient(
            scaled_gen_up_loss, up_G.trainable_variables
        ))
        up_D_gradients = up_D_optim.get_unscaled_gradients( tape.gradient(
            scaled_disc_loss, up_D.trainable_variables
        ))

        up_G_optim.apply_gradients(
            zip(up_G_gradients, up_G.trainable_variables)
        )

        up_D_optim.apply_gradients(
            zip(up_D_gradients, up_D.trainable_variables)
        )
            

        return (
            real_human,
            real_anime,
            fake_anime,
            cycled_human,
            fake_human,
            cycled_anime,
            same_human,
            same_anime,
            fake_anime_up,
            real_anime_up,
            gen_anime_loss,
            gen_human_loss,
            disc_human_loss,
            disc_anime_loss,
            gen_up_loss,
            dis_up_loss
        )

    def process_data_for_display(input_image):
        return input_image * 0.5 + 0.5


    print_string = [
            "real_human",
            "real_anime",
            "fake_anime",
            "cycled_human",
            "fake_human",
            "cycled_anime",
            "same_human",
            "same_anime",
            "fake_anime_up",
            "real_anime_up",
            "gen_anime_loss",
            "gen_human_loss",
            "disc_human_loss",
            "disc_anime_loss",
            "gen_up_loss",
            "dis_up_loss"
    ]

    counter = 0
    i = -1
    while True:
        i = i + 1
        counter = counter + 1
        AnimeBatchImage, BigAnimeBatchImage = next(iter(AnimeCleanData))
        CelebaBatchImage = next(iter(CelebaData))
        print(counter)

        if not (i % 5):
            result = trainstep(CelebaBatchImage, AnimeBatchImage,BigAnimeBatchImage)

            with file_writer.as_default():
                for j in range(len(result)):
                    if j<10:
                        tf.summary.image(
                        print_string[j],
                        process_data_for_display(result[j]),
                        step=counter,
                        )
                    else:
                        tf.summary.scalar(
                        print_string[j],
                        result[j],
                        step=counter,
                        )
                
            ckpt_manager.save()
        else:
            trainstep(CelebaBatchImage, AnimeBatchImage,BigAnimeBatchImage)
Exemple #4
0
def run_tensorflow():
    """
    [summary] This is needed for tensorflow to free up my gpu ram...
    """

    gpus = tf.config.experimental.list_physical_devices("GPU")
    if gpus:
        try:
            # Currently, memory growth needs to be the same across GPUs
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)
            logical_gpus = tf.config.experimental.list_logical_devices("GPU")
            print(len(gpus), "Physical GPUs,", len(logical_gpus),
                  "Logical GPUs")
        except RuntimeError as e:
            # Memory growth must be set before GPUs have been initialized
            print(e)

    mixed_precision = tf.keras.mixed_precision.experimental

    policy = mixed_precision.Policy("mixed_float16")
    mixed_precision.set_policy(policy)

    AnimeCleanData = getAnimeCleanData(BATCH_SIZE=batch_size)
    CelebaData = getCelebaData(BATCH_SIZE=batch_size)

    generator_to_anime_optimizer = mixed_precision.LossScaleOptimizer(
        tf.keras.optimizers.Adam(1e-5, beta_1=0.5), loss_scale="dynamic")
    generator_to_human_optimizer = mixed_precision.LossScaleOptimizer(
        tf.keras.optimizers.Adam(1e-4, beta_1=0.5), loss_scale="dynamic")

    generator_anime_upscale_optimizer = mixed_precision.LossScaleOptimizer(
        tf.keras.optimizers.Adam(1e-4, beta_1=0.5), loss_scale="dynamic")

    discriminator_human_optimizer = mixed_precision.LossScaleOptimizer(
        tf.keras.optimizers.Adam(1e-4, beta_1=0.5), loss_scale="dynamic")
    discriminator_anime_optimizer = mixed_precision.LossScaleOptimizer(
        tf.keras.optimizers.Adam(1e-4, beta_1=0.5), loss_scale="dynamic")

    discriminator_anime_upscale_optimizer = mixed_precision.LossScaleOptimizer(
        tf.keras.optimizers.Adam(1e-4, beta_1=0.5), loss_scale="dynamic")

    generator_to_anime = GeneratorV2()
    generator_to_human = GeneratorV2()

    generator_anime_upscale = UpsampleGenerator()

    # input: Batch, 256,256,3
    discriminator_human = LS_Discriminator()
    discriminator_anime = LS_Discriminator()

    discriminator_anime_upscale = LS_Discriminator()

    checkpoint_path = "./checkpoints/LSgan"

    ckpt = tf.train.Checkpoint(
        generator_to_anime=generator_to_anime,
        generator_to_human=generator_to_human,
        generator_anime_upscale=generator_anime_upscale,  # *
        discriminator_human=discriminator_human,
        discriminator_anime=discriminator_anime,
        discriminator_anime_upscale=discriminator_anime_upscale,  # *
        generator_to_anime_optimizer=generator_to_anime_optimizer,
        generator_to_human_optimizer=generator_to_human_optimizer,
        generator_anime_upscale_optimizer=generator_anime_upscale_optimizer,  # *
        discriminator_human_optimizer=discriminator_human_optimizer,
        discriminator_anime_optimizer=discriminator_anime_optimizer,
        discriminator_anime_upscale_optimizer=
        discriminator_anime_upscale_optimizer,  # *
    )

    ckpt_manager = tf.train.CheckpointManager(ckpt,
                                              checkpoint_path,
                                              max_to_keep=5)
    logdir = "./logs/LSgan/" + datetime.now().strftime("%Y%m%d-%H%M%S")
    file_writer = tf.summary.create_file_writer(logdir)
    # if a checkpoint exists, restore the latest checkpoint.
    if ckpt_manager.latest_checkpoint:
        ckpt.restore(ckpt_manager.latest_checkpoint)
        print("Latest checkpoint restored!!")

    # out: Batch, 16, 16, 1
    # x is human, y is anime
    @tf.function
    def trainstep(real_human, real_anime, big_anime):

        with tf.GradientTape(persistent=True) as tape:

            fake_anime = generator_to_anime(real_human, training=True)
            cycled_human = generator_to_human(fake_anime, training=True)

            fake_human = generator_to_human(real_anime, training=True)
            cycled_anime = generator_to_anime(fake_human, training=True)

            # same_human and same_anime are used for identity loss.
            same_human = generator_to_human(real_human, training=True)
            same_anime = generator_to_anime(real_anime, training=True)

            disc_real_human = discriminator_human(real_human, training=True)
            disc_real_anime = discriminator_anime(real_anime, training=True)

            disc_fake_human = discriminator_human(fake_human, training=True)
            disc_fake_anime = discriminator_anime(fake_anime, training=True)

            # assert()
            # calculate the loss
            gen_anime_loss = mse_loss(disc_fake_anime,
                                      tf.zeros_like(disc_fake_anime))
            gen_human_loss = mse_loss(disc_fake_human,
                                      tf.zeros_like(disc_fake_human))

            total_cycle_loss = cycle_loss(real_human,
                                          cycled_human) + cycle_loss(
                                              real_anime, cycled_anime)
            total_gen_anime_loss = (gen_anime_loss + total_cycle_loss +
                                    identity_loss(real_anime, same_anime) +
                                    mse_loss(real_anime, fake_anime) * 0.1)

            total_gen_human_loss = (gen_human_loss + total_cycle_loss +
                                    identity_loss(real_human, same_human) +
                                    mse_loss(real_anime, fake_anime))
            disc_human_loss = mse_loss(
                disc_real_human, tf.ones_like(disc_real_human)) + mse_loss(
                    disc_fake_human, -1 * tf.ones_like(disc_fake_human))
            disc_anime_loss = mse_loss(
                disc_real_anime, tf.ones_like(disc_real_human)) + mse_loss(
                    disc_fake_anime, -1 * tf.ones_like(disc_fake_anime))

            fake_anime_upscale = generator_anime_upscale(fake_anime,
                                                         training=True)
            same_anime_upscale = generator_anime_upscale(same_anime,
                                                         training=True)
            disc_fake_upscale = discriminator_anime_upscale(fake_anime_upscale,
                                                            training=True)
            disc_same_upscale = discriminator_anime_upscale(same_anime_upscale,
                                                            training=True)
            disc_real_big = discriminator_anime_upscale(big_anime,
                                                        training=True)

            gen_upscale_loss = (
                mse_loss(disc_fake_upscale, tf.zeros_like(disc_fake_upscale)) +
                mse_loss(disc_same_upscale, tf.zeros_like(disc_same_upscale)) *
                0.1)
            # tf.print("gen_upscale_loss", gen_upscale_loss)

            print("generator_to_anime.count_params()",
                  generator_to_anime.count_params())
            print("discriminator_anime.count_params()",
                  discriminator_human.count_params())
            print("generator_anime_upscale.count_params()",
                  generator_anime_upscale.count_params())
            print(
                "discriminator_anime_upscale.count_params()",
                discriminator_anime_upscale.count_params(),
            )

            disc_upscale_loss = mse_loss(
                disc_fake_upscale,
                -1 * tf.ones_like(disc_fake_upscale)) + mse_loss(
                    disc_real_big, tf.ones_like(disc_real_big))

            scaled_total_gen_anime_loss = generator_to_anime_optimizer.get_scaled_loss(
                total_gen_anime_loss)
            scaled_total_gen_human_loss = generator_to_human_optimizer.get_scaled_loss(
                total_gen_human_loss)
            scaled_gen_upscale_loss = generator_anime_upscale_optimizer.get_scaled_loss(
                gen_upscale_loss)
            scaled_disc_human_loss = discriminator_human_optimizer.get_scaled_loss(
                disc_human_loss)
            scaled_disc_anime_loss = discriminator_anime_optimizer.get_scaled_loss(
                disc_anime_loss)
            scaled_disc_upscale_loss = discriminator_anime_upscale_optimizer.get_scaled_loss(
                disc_upscale_loss)

        generator_to_anime_gradients = generator_to_anime_optimizer.get_unscaled_gradients(
            tape.gradient(scaled_total_gen_anime_loss,
                          generator_to_anime.trainable_variables))

        generator_to_human_gradients = generator_to_human_optimizer.get_unscaled_gradients(
            tape.gradient(scaled_total_gen_human_loss,
                          generator_to_human.trainable_variables))

        generator_upscale_gradients = generator_anime_upscale_optimizer.get_unscaled_gradients(
            tape.gradient(scaled_gen_upscale_loss,
                          generator_anime_upscale.trainable_variables))

        discriminator_human_gradients = discriminator_human_optimizer.get_unscaled_gradients(
            tape.gradient(scaled_disc_human_loss,
                          discriminator_human.trainable_variables))
        discriminator_anime_gradients = discriminator_anime_optimizer.get_unscaled_gradients(
            tape.gradient(scaled_disc_anime_loss,
                          discriminator_anime.trainable_variables))

        discriminator_upscale_gradients = discriminator_anime_upscale_optimizer.get_unscaled_gradients(
            tape.gradient(
                scaled_disc_upscale_loss,
                discriminator_anime_upscale.trainable_variables,
            ))

        generator_to_anime_optimizer.apply_gradients(
            zip(generator_to_anime_gradients,
                generator_to_anime.trainable_variables))

        generator_to_human_optimizer.apply_gradients(
            zip(generator_to_human_gradients,
                generator_to_human.trainable_variables))

        generator_anime_upscale_optimizer.apply_gradients(
            zip(generator_upscale_gradients,
                generator_anime_upscale.trainable_variables))

        discriminator_human_optimizer.apply_gradients(
            zip(discriminator_human_gradients,
                discriminator_human.trainable_variables))

        discriminator_anime_optimizer.apply_gradients(
            zip(discriminator_anime_gradients,
                discriminator_anime.trainable_variables))

        discriminator_anime_upscale_optimizer.apply_gradients(
            zip(
                discriminator_upscale_gradients,
                discriminator_anime_upscale.trainable_variables,
            ))

        return [
            real_human,
            real_anime,
            fake_anime,
            cycled_human,
            fake_human,
            cycled_anime,
            same_human,
            same_anime,
            fake_anime_upscale,
            same_anime_upscale,
            # real_anime_upscale,
            gen_anime_loss,
            gen_human_loss,
            disc_human_loss,
            disc_anime_loss,
            total_gen_anime_loss,
            total_gen_human_loss,
            gen_upscale_loss,
            disc_upscale_loss,
        ]

    def process_data_for_display(input_image):
        return input_image * 0.5 + 0.5

    counter = 0
    i = -1
    last_time = time.time()
    print_string = [
        "real_human",
        "real_anime",
        "fake_anime",
        "cycled_human",
        "fake_human",
        "cycled_anime",
        "same_human",
        "same_anime",
        "fake_anime_upscale",
        "same_anime_upscale",
        "gen_anime_loss",
        "gen_human_loss",
        "disc_human_loss",
        "disc_anime_loss",
        "total_gen_anime_loss",
        "total_gen_human_loss",
        "gen_upscale_loss",
        "disc_upscale_loss",
    ]

    while True:
        i = i + 1
        counter = counter + 1
        AnimeBatchImage, BigAnimeBatchImage = next(iter(AnimeCleanData))
        CelebaBatchImage = next(iter(CelebaData))
        print(counter)
        print(time.time() - last_time)
        last_time = time.time()
        if not (i % 5):

            result = trainstep(CelebaBatchImage, AnimeBatchImage,
                               BigAnimeBatchImage)
            # print(type(AnimeTrainImage))
            # print(AnimeTrainImage.shape)

            with file_writer.as_default():
                for j in range(len(result)):

                    if j < 10:
                        tf.summary.image(
                            print_string[j],
                            process_data_for_display(result[j]),
                            step=counter,
                        )
                    else:
                        print(print_string[j], result[j])
                        tf.summary.scalar(
                            print_string[j],
                            result[j],
                            step=counter,
                        )

            ckpt_manager.save()
        else:
            # trainstep(CelebaBatchImage, AnimeBatchImage, BigAnimeBatchImage)
            trainstep(CelebaBatchImage, AnimeBatchImage, BigAnimeBatchImage)