def tabu2genetic(TSnum, _map, _numberOfGuards, _maxTabuMemory, _maxIteration):
    # TSnum is th number of TS solutions that will pass into the GA
    tabuSolutions = []

    for i in range(TSnum):
        # initialize a solution
        initialSolution = pddl.getSolution(_map, _numberOfGuards)
        # pass solution in TS and get an optimal TS path
        tabuSolutions.append(
            tabuSearch.search(initialSolution, _maxIteration, _maxTabuMemory))
    # pass TS solutions to GA
    optSolutions = genetic.GA(tabuSolutions)

    return optSolutions
def main():

    # mapSize = 20
    # numberOfGuards = 2
    # numberOfObstacles = 2*numberOfGuards

    # for mapSize in range(20,100,10):
    #     for numberOfGuards in range(1,10):
    # numberOfObstacles = 2*numberOfGuards
    #         m = map.Map(numberOfObstacles, 0, -1, mapSize, mapSize, numberOfGuards)
    #
    #     # for i in range(10):
    #     #     m = map.Map(numberOfObstacles, 0, -1, mapSize, mapSize, numberOfGuards)
    #     #     m.printMap()
    #
    #         with open('Number_of_guards='+str(numberOfGuards)+',area_size='+str(mapSize*mapSize)+'.pkl', 'wb') as output:
    #             pickle.dump(m,output,pickle.HIGHEST_PROTOCOL)

    # with open('map_test0.pkl', 'rb') as input:
    # with open('map_test1.pkl', 'rb') as input:
    # with open('map_test2.pkl', 'rb') as input:
    # with open('map_test3.pkl', 'rb') as input:
    # with open('map_test4.pkl', 'rb') as input:
    # with open('map_test5.pkl', 'rb') as input:
    # with open('map_test6.pkl', 'rb') as input:
    # with open('map_test7.pkl', 'rb') as input:
    # with open('map_test8.pkl', 'rb') as input:
    # with open('map_test9.pkl', 'rb') as input:
    # m=pickle.load(input)
    # m.printMap()

    for testcase in testcases:
        with open(testcase, 'rb') as input:
            m = pickle.load(input)
            m.printMap()

            help = testcase.split('Number_of_guards=')
            numberOfGuards = int(help[1][0])

            initialSolution = pddl.getSolution(m, numberOfGuards)
            print("\nInitial solution\n")
            initialSolution.printMapWithGuardsPath()

            # print("\nFinal solution of Tabu Search\n")
            bestSolution, performance = genetic.GA(m, numberOfGuards)
            bestSolution.printMapWithGuardsPath()
            # plt.plot(performance)
            fig = plt.figure(performance)
            fig.savefig(+str(testcase) + '_performance_plot.png')
def sa2genetic(SAnum, _t0, _tMin, _eMax):
    # SAnum is th number of TS solutions that will pass into the GA
    SAsolutions = []

    for i in range(TSnum):
        # initialize a solution
        initialSolution = pddl.getSolution(_map, _numberOfGuards)
        # pass solution in TS and get an optimal TS path
        SAsolutions.append(
            simulatedAnnealing.search(_t0,
                                      initialSolution,
                                      _tMin,
                                      _eMax,
                                      deltaT=0.1))

    # pass SA solutions to GA
    optSolutions = genetic.GA(SAsolutions)

    return optSolutions
Exemple #4
0
def main():
    if len(sys.argv) != 2:
        print('usage: python test_xor.py epochs')
    epochs = int(sys.argv[1])

    population = init()

    ga = genetic.GA(POPULATION_SIZE, MUTATION_RATE, ELITISM)

    for epoch in range(epochs):
        fitness = [simulate(net) for net in population]
        population = ga.step(population, fitness)
        print('epoch: {} - best fitness: {}'.format(epoch, max(fitness)))

    fitness = [simulate(net) for net in population]
    best = np.argmax(fitness)
    champion = population[best]
    for test in [(True, False), (False, False), (True, True), (False, True)]:
        for _ in range(10):
            out = champion.step(test)[0]
        if out == (test[0] != test[1]):
            print("ok!")
        else:
            print("wrong: {} {} -> {}".format(test[0], test[1], out))
def main():

    mapSize = 20
    numberOfObstacles = 20
    numberOfGuards = 5
    maxIteration = 10
    maxTabuMemory = 5

    temperatureInit = 1000
    temperatureMin = 900
    eMin = 400

    max_gen = 100

    m = map.Map(numberOfObstacles, 0, -1, mapSize, mapSize, numberOfGuards)
    m.printMap()

    path1 = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/Number_of_guards=1,area_size=400.pkl'
    path2 = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/Number_of_guards=1,area_size=900.pkl'
    path3 = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/Number_of_guards=1,area_size=1600.pkl'
    paths = [path1, path2, path3]
    # path = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/N2'
    # path = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/N3'
    # path = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/N4'
    # path = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/N5'
    # path = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/N6'
    # path = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/N7'
    # path = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/N8'
    # path = '/home/ferles/Desktop/Project and Essay/AI_project/ai17_Group20/src/testcases/N9'

    for path in paths:
        with open(path, 'rb') as input:
            file = open(path + '_output.txt', 'w')

            m = pickle.load(input)
            file.write(m.printMap())
            file.write('\n')

            # numberOfGuards=int((testcases[0].split('Number_of_guards='))[1][0])
            numberOfGuards = 1

            initialSolution = pddl.getSolution(m, numberOfGuards)

            for i in range(0, numberOfGuards):
                file.write("\nInitial solution Guard " + str(i) + "\n")
                # print("\nInitial solution Guard " + str(i) + "\n")

                file.write(initialSolution.printMapWithOneGuardsPath(i))
                file.write('\n')

            file.write("\nBegin TabuSearch with memory " + str(maxTabuMemory) +
                       " and for " + str(maxIteration) + " iterations\n")
            # print("\nBegin TabuSearch with memory " + str(maxTabuMemory) + " and for " + str(maxIteration) + " iterations\n")
            bestSolution, performance = tabuSearch.search(
                initialSolution, maxIteration, maxTabuMemory, file)
            plt.plot(performance)
            plt.xlabel('Iteration')
            plt.ylabel('Fitness')
            # plt.savefig(testcases[0]+'_TS_fitEvol.png', bbox_inches='tight')
            plt.savefig(path + '_TS_fitEvol.png', bbox_inches='tight')
            plt.clf()
            # plt.show()
            file.write("\nFinal solution of Tabu Search\n")
            # print("\nFinal solution of Tabu Search\n")
            for i in range(0, numberOfGuards):
                # print("\nBest solution Guard " + str(i) + "\n")
                file.write("\nBest solution Guard " + str(i) + "\n")

                file.write(bestSolution.printMapWithOneGuardsPath(i))

            file.write("\nFinal solution of Tabu Search\n")
            # print("\nFinal solution of Tabu Search\n")
            file.write(bestSolution.printMapWithGuardsPath())
            # bestSolution.printMapWithGuardsPath()

            file.write("\nEach path of guard\n")
            # print("\nEach path of guad\n")
            for g in bestSolution.guardsPath:
                # print(g)
                file.write(str(g) + "\n")
                file.write(str(g) + "\n")
                file.write(str(g) + "\n")

                # print("\nBegin simulatedAnnealing with initial Energy " + str(temperatureInit) + " and for " + "\n")
            file.write("\nBegin simulatedAnnealing with initial Energy " +
                       str(temperatureInit) + " and for " + "\n")
            bestSolution, performance = simulatedAnnealing.search(
                temperatureInit, initialSolution, temperatureMin, eMin, file)
            plt.plot(performance)
            plt.xlabel('Iteration')
            plt.ylabel('Energy')
            # plt.savefig(testcases[0]+'_SA_fitEvol.png', bbox_inches='tight')
            plt.savefig(path + '_SA_fitEvol.png', bbox_inches='tight')
            plt.clf()
            # plt.show()

            file.write("\nFinal solution of Simulated Annealing\n")
            print("\nFinal solution of Simulated Annealing\n")
            for i in range(0, numberOfGuards):
                file.write("\nBest solution Guard " + str(i) + "\n")
                # print("\nBest solution Guard " + str(i) + "\n")

                # bestSolution.printMapWithOneGuardsPath(i)
                file.write(bestSolution.printMapWithOneGuardsPath(i))

            # print("\nFinal solution of Simulated Annealing\n")
            file.write("\nFinal solution of Simulated Annealing\n")
            file.write(bestSolution.printMapWithGuardsPath())
            # bestSolution.printMapWithGuardsPath()

            file.write("\nEach path of guard\n")
            # print("\nEach path of guad\n")
            for g in bestSolution.guardsPath:
                # print(g)
                file.write(str(g) + "\n")

            file.write("\nBegin genetic with memory with max generations " +
                       str(max_gen) + "\n")
            # print("\nBegin genetic with memory with max generations " + str(max_gen) + "\n")
            bestSolution, performance = genetic.GA(m, numberOfGuards, file,
                                                   max_gen)
            plt.plot(performance)
            plt.xlabel('Iteration')
            plt.ylabel('Fitness')
            plt.savefig(path + '_GA_fitEvol.png', bbox_inches='tight')
            plt.clf()
            # plt.savefig(testcases[0]+'_GA_fitEvol.png', bbox_inches='tight')
            # plt.show()
            # print("\nFinal solution of Genetic Algorithm\n")
            file.write("\nFinal solution of Genetic Algorithm\n")
            for i in range(0, numberOfGuards):
                file.write("\nBest solution Guard " + str(i) + "\n")
                # print("\nBest solution Guard " + str(i) + "\n")
                file.write(bestSolution.printMapWithOneGuardsPath(i))
                # bestSolution.printMapWithOneGuardsPath(i)

            file.write("\nFinal solution of Genetic Algorithm\n")
            # print("\nFinal solution of Genetic Algorithm\n")
            file.write(bestSolution.printMapWithGuardsPath())
            # bestSolution.printMapWithGuardsPath()

            file.write("\nEach path of guard\n")
            # print("\nEach path of guard\n")
            for g in bestSolution.guardsPath:
                # print(g)
                file.write(str(g) + "\n")

            file.close()

            print("ALL SET")