def runGeneticAlgorithm(): popN = 100 # n number of chromos per population genesPerCh = 54 max_iterations = 1000 chromos = geneticAlgorithm.generatePop(popN) #generate new population of random chromosomes iterations = 0 while True: if (iterations == max_iterations): rankedPop = geneticAlgorithm.rankPop(chromos) #print(len(rankedPop)) #print rankedPop chromos = [] agent = geneticAlgorithm.iteratePop(rankedPop, popN, True) listKeys = agent[0] keyNames = [] for i in range(len(listKeys)): if (listKeys[i] == 1): keyNames.append(allKeys[i]) print agent print keyNames break # take the pop of random chromos and rank them based on their fitness score/proximity to target output rankedPop = geneticAlgorithm.rankPop(chromos) #print rankedPop chromos = [] chromos = geneticAlgorithm.iteratePop(rankedPop, popN, False) iterations += 1
def runGeneticAlgorithm(): while True: if (iterations == max_iterations): #get the new generation, ranked by fitness score rankedPop = geneticAlgorithm.rankPop(chromos) #print(len(rankedPop)) #print rankedPop chromos = [] #get the best agent from the population agent = geneticAlgorithm.iteratePop(rankedPop, popN, True) listKeys = agent[0] keyNames = [] #find the best keys for this agent for i in range(len(listKeys)): if (listKeys[i] == 1): keyNames.append(allKeys[i]) print agent print keyNames break # take the population of random chromos and rank them based on their fitness score/proximity to target output rankedPop = geneticAlgorithm.rankPop(chromos) #print rankedPop chromos = [] #get the new chromosomes chromos = geneticAlgorithm.iteratePop(rankedPop, popN, False) iterations += 1