def main(): m = readMatrix('matrix_games/5x5.txt') numR, numC = m.shape Population.initPopulation = initPopulation Population.evolve = evolve p = Population(30, 2) p.initPopulation(numC, numR) p.evolve(m)
def main(): pygame.init() window = pygame.display.set_mode((d_width, d_height)) circles = getCircles() for circle in circles: pygame.draw.circle(window, (255, 255, 255), circle[0], circle[1], 1) Population.initPopulation = initPopulation Population.evolve = evolve p = Population(80, 3) p.initPopulation() p.evolve(window, circles) #pygame.display.flip() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit(0)
def testNeuralNetWithGA(): net = NeuralNet(2, 2, 1) t_model = utils.readTrainModel(os.path.join(utils.getResourcesPath(), 'logic_gates/NAND.txt')) Population.initPopulation = initPopulation Population.evolve = evolve p = Population(70, 9) p.initPopulation() p.evolve(net, t_model) print(net.getOutputs([0, 0])) print(net.getOutputs([0, 1])) print(net.getOutputs([1, 0])) print(net.getOutputs([1, 1])) print(net.getError(t_model)) #testPerceptron() #testNeuralNet() #testNeuralNetWithGA() #numberRecognition()
def main(): pygame.init() maze = readMaze('mazes/9x15.txt') numR, numC = maze.shape window = pygame.display.set_mode((numC * square_l, numR * square_l)) renderMaze(window, maze) Population.initPopulation = initPopulation Population.evolve = evolve p = Population(50, 30) p.mutation_rate = 0.1 p.elites_num = 5 p.initPopulation() p.evolve(window, maze) print("done") while True: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit(0)
def main(): global fitnessHistory Population.initPopulation = initPopulation Population.evolve = evolve p = Population(30, 1) #fig = plt.figure() for i in range(1): colors = ['b', 'r', 'g'] p.initPopulation() p.evolve() #ax = fig.add_subplot(111) #ax.plot(np.arange(len(fitnessHistory)), fitnessHistory, c=colors[i]) fitnessHistory = [] h = np.array(history) h = np.rot90(h, 1) print(h) plt.imshow(h, cmap='Greys', aspect='auto', interpolation='nearest') plt.show()