Exemple #1
0
    def __init__(self, maxframes):
        self.settings = self.initSettings()
        self.sim_frames = int(self.settings['sim_frames'])
        self.controller = Controller(self)
        self.view = View(self)
        self.crashed = False
        self.grid = self.initGrid()
        self.keys = {}
        self.reader = GenomeReader(self)

        self.evolution = Evolution(self)
        self.evolution.loadGenomes('../res/genomes', 1000)

        self.entities = {
            'food':
            Consumable('food', 400, 300, 'Food', 0.5, self),
            'player':
            NPC('player', 400, 220, 2, 10, 10, 'PC', 1,
                self.reader.makeGenome('../res/genomes/000000.dna'), self)
        }
        self.grid = self.addEntities2Grid()

        self.score = 0
        self.maxframes = 0

        self.startThreads()
Exemple #2
0
    def __init__(self, maxframes):
        self.settings = self.initSettings()
        self.X, self.Y = self.loadData()
        self.crashed = False
        self.reader = GenomeReader(self)
        self.evolution = Evolution(self)
        self.evolution.loadGenomes('../res/genomes', 10)
        self.score = 0
        self.best = 999999

        self.startThreads()
Exemple #3
0
    def load_system(self, system, ai):
        """
        Load the system from a YAML file
        """
        self.ai = ai

        with open(system, 'r') as f:
            system = yaml.load(f)

        self.minimap = system['minimap']
        self.connections = system['connections']

        self.vehicles = system.get('vehicles', 40)

        self.core = Core(self.minimap, self.connections, self.vehicles)

        hidden_layers = layers = system.get('layers', [])
        side_neurons = len(self.core.junction_queues)
        self.layers = [side_neurons] + hidden_layers + [side_neurons]
        self.evolution = Evolution(self.layers)
Exemple #4
0
    def __init__(self,
                 pipe=None,
                 lock=None,
                 seed=42,
                 worker_nr=None,
                 partition=None,
                 environment=None,
                 environment_name=None,
                 pop_size=0,
                 cppn_output_range=0,
                 input_shape=None,
                 hidden_shapes=None,
                 output_shape=None,
                 c1=1.0,
                 c2=1.0,
                 c3=0.4,
                 dt=3.0,
                 prob_add_link=0.1,
                 prob_add_node=0.03,
                 prob_mut_weights=0.8,
                 prob_mut_uniform=0.9,
                 prob_interspecies_mating=0.001,
                 elitism=0.2,
                 activation_function=None,
                 cppn_weight_range=None,
                 function_set=None):
        super().__init__()
        self.population = []  #current population of genomes
        self.fitness_scores = None
        self.random = RandomState(seed)

        self.pipe = pipe
        self.lock = lock
        self.worker_nr = worker_nr
        self.partition = partition
        self.pop_size = pop_size
        self.population = [None] * pop_size
        self.fitness_scores = np.full((pop_size, ), None, dtype=float)
        self.cppn_output_range = cppn_output_range
        self.input_shape = input_shape
        self.hidden_shapes = hidden_shapes
        self.output_shape = (output_shape, )
        self.environment = environment
        if self.SHOW_BEST_INDIVIDUAL or self.SHOW:
            self.environment.render()
            time.sleep(5)
        self.environment_name = environment_name
        while len(self.output_shape) < len(self.input_shape):
            self.output_shape = (1, ) + self.output_shape
        self.activation_function = activation_function
        self.loadGenomesFromFiles(self.GENOMES_BASE_FOLDER + environment_name)

        self.c1 = c1
        self.c2 = c2
        self.c3 = c3
        self.dt = dt
        self.prob_add_link = prob_add_link
        self.prob_add_node = prob_add_node
        self.prob_mut_weights = prob_mut_weights
        self.prob_mut_uniform = prob_mut_uniform
        self.prob_interspecies_mating = prob_interspecies_mating
        self.elitism = elitism
        self.cppn_weight_range = cppn_weight_range
        self.function_set = function_set

        #structures
        self.layers = []
        self.weights = []
        self.coords = []

        self.buildStructures(self.input_shape, self.hidden_shapes,
                             self.output_shape)

        self.evolution = Evolution(
            genomes=self.population,
            fitness=self.fitness_scores,
            random=self.random,
            c1=self.c1,
            c2=self.c2,
            c3=self.c3,
            dt=self.dt,
            prob_add_link=self.prob_add_link,
            prob_add_node=self.prob_add_node,
            prob_mut_weights=self.prob_mut_weights,
            prob_mut_uniform=self.prob_mut_uniform,
            prob_interspecies_mating=self.prob_interspecies_mating,
            elitism=self.elitism,
            weight_range=self.cppn_weight_range,
            function_set=self.function_set)
Exemple #5
0
class Worker(Process):
    GENOMES_BASE_FOLDER = '../res/genomes/'  #base directory where pre-trained genomes are stored
    SHOW_BEST_INDIVIDUAL = True
    SHOW = True

    def __init__(self,
                 pipe=None,
                 lock=None,
                 seed=42,
                 worker_nr=None,
                 partition=None,
                 environment=None,
                 environment_name=None,
                 pop_size=0,
                 cppn_output_range=0,
                 input_shape=None,
                 hidden_shapes=None,
                 output_shape=None,
                 c1=1.0,
                 c2=1.0,
                 c3=0.4,
                 dt=3.0,
                 prob_add_link=0.1,
                 prob_add_node=0.03,
                 prob_mut_weights=0.8,
                 prob_mut_uniform=0.9,
                 prob_interspecies_mating=0.001,
                 elitism=0.2,
                 activation_function=None,
                 cppn_weight_range=None,
                 function_set=None):
        super().__init__()
        self.population = []  #current population of genomes
        self.fitness_scores = None
        self.random = RandomState(seed)

        self.pipe = pipe
        self.lock = lock
        self.worker_nr = worker_nr
        self.partition = partition
        self.pop_size = pop_size
        self.population = [None] * pop_size
        self.fitness_scores = np.full((pop_size, ), None, dtype=float)
        self.cppn_output_range = cppn_output_range
        self.input_shape = input_shape
        self.hidden_shapes = hidden_shapes
        self.output_shape = (output_shape, )
        self.environment = environment
        if self.SHOW_BEST_INDIVIDUAL or self.SHOW:
            self.environment.render()
            time.sleep(5)
        self.environment_name = environment_name
        while len(self.output_shape) < len(self.input_shape):
            self.output_shape = (1, ) + self.output_shape
        self.activation_function = activation_function
        self.loadGenomesFromFiles(self.GENOMES_BASE_FOLDER + environment_name)

        self.c1 = c1
        self.c2 = c2
        self.c3 = c3
        self.dt = dt
        self.prob_add_link = prob_add_link
        self.prob_add_node = prob_add_node
        self.prob_mut_weights = prob_mut_weights
        self.prob_mut_uniform = prob_mut_uniform
        self.prob_interspecies_mating = prob_interspecies_mating
        self.elitism = elitism
        self.cppn_weight_range = cppn_weight_range
        self.function_set = function_set

        #structures
        self.layers = []
        self.weights = []
        self.coords = []

        self.buildStructures(self.input_shape, self.hidden_shapes,
                             self.output_shape)

        self.evolution = Evolution(
            genomes=self.population,
            fitness=self.fitness_scores,
            random=self.random,
            c1=self.c1,
            c2=self.c2,
            c3=self.c3,
            dt=self.dt,
            prob_add_link=self.prob_add_link,
            prob_add_node=self.prob_add_node,
            prob_mut_weights=self.prob_mut_weights,
            prob_mut_uniform=self.prob_mut_uniform,
            prob_interspecies_mating=self.prob_interspecies_mating,
            elitism=self.elitism,
            weight_range=self.cppn_weight_range,
            function_set=self.function_set)

    """
    What to do while running
    """

    def run(self):
        stop = False
        while not stop:
            self.fitness_scores = np.full((self.pop_size, ), None, dtype=float)
            for genome_id in self.partition:
                self.fitness_scores[genome_id] = self.evaluate(genome_id)
            self.pipe.send(self.fitness_scores)
            self.fitness_scores = self.pipe.recv()
            time.sleep(5)  #prevent overheating or something?
            self.writeGenomesToFiles(self.GENOMES_BASE_FOLDER +
                                     self.environment_name)
            #calculate highscore over multiple trials. This does not count to towards training time
            self.pipe.send(self.calcHighscore())
            stop = self.pipe.recv()

            self.population = self.evolution.evolve(
                fitness_scores=self.fitness_scores, genomes=self.population)

    def calcHighscore(self):
        genome_id = np.nanargmax(self.fitness_scores)
        #build phenotype
        cppn = CPPN(genome=self.population[genome_id],
                    cppn_output_range=self.cppn_output_range)
        substrate = Substrate(CPPN=cppn,
                              layers=self.layers,
                              coords=self.coords,
                              activation_function=self.activation_function,
                              cppn_output_range=self.cppn_output_range)
        highscores = []
        for _ in range(
                max(1, int(1 / (len(self.population) / len(self.partition))))):
            observation = self.environment.reset()
            score = 0.
            while True:
                activations = substrate.querySubstrate(
                    input_matrix=observation)
                action = np.argmax(activations)
                observation, reward, done, info = self.environment.step(action)
                print(info)
                score += reward
                if self.SHOW_BEST_INDIVIDUAL:
                    self.environment.render()
                    time.sleep(1. / 60)
                if done:
                    print(info)
                    highscores.append(score)
                    break
        return np.array(highscores, dtype=float)

    def evaluate(self, genome_id):
        #build phenotype
        cppn = CPPN(genome=self.population[genome_id],
                    cppn_output_range=self.cppn_output_range)
        substrate = Substrate(CPPN=cppn,
                              layers=self.layers,
                              coords=self.coords,
                              activation_function=self.activation_function,
                              cppn_output_range=self.cppn_output_range)
        #play simulation
        observation = self.environment.reset()
        score = 0.
        while True:
            activations = substrate.querySubstrate(input_matrix=observation)
            action = np.argmax(activations)
            observation, reward, done, info = self.environment.step(action)
            score += reward
            if self.SHOW:
                self.environment.render()
                time.sleep(1. / 60)
            if done:
                return score
        return 0.

    def show(self):
        genome_id = np.nanargmax(self.fitness_scores)
        #build phenotype
        cppn = CPPN(genome=self.population[genome_id],
                    cppn_output_range=self.cppn_output_range)
        substrate = Substrate(CPPN=cppn,
                              layers=self.layers,
                              coords=self.coords,
                              activation_function=self.activation_function,
                              cppn_output_range=self.cppn_output_range)
        #play simulation
        observation = self.environment.reset()
        while True:
            self.environment.render()
            time.sleep(1. / 24)
            activations = substrate.querySubstrate(input_matrix=observation)
            action = np.argmax(activations)
            observation, _, done, _ = self.environment.step(action)
            if done:
                self.environment.render()
                return

    """
    Load (pre-trained) genomes from .genome files 
    """

    def loadGenomesFromFiles(self, path):
        self.lock.acquire()
        for genome_file in os.listdir(path):
            if genome_file.endswith(".genome"):
                with open(os.path.join(path, genome_file)) as f:
                    try:
                        genome = json.load(f)  #.read()
                    except:
                        log(self, traceback.format_exc())
                #genome = lambdaJSON.deserialize(serialized)

                genome['links'] = {
                    int(key): genome['links'][key]
                    for key in genome['links']
                }

                self.population[int(genome_file.split('.')[0])] = genome
        self.lock.release()

    def writeGenomesToFiles(self, path):
        self.lock.acquire()
        for genome_id in self.partition:
            with open(path + '/' + str(genome_id).zfill(3) + '.genome',
                      'w+') as jf:
                json.dump(self.population[genome_id], jf)
                #jf.write(lambdaJSON.serialize(self.population[genome_id]))
        self.lock.release()

    def stopCondition(self):
        return False

    def buildStructures(self, input_shape, hidden_shapes, output_shape):
        #layers
        self.layers.append(np.zeros(input_shape))
        for shape in hidden_shapes:
            self.layers.append(np.zeros(shape))
        self.layers.append(np.zeros(output_shape))

        l_coords = []

        #coordinates
        l_axis = np.arange(-1., 1.,
                           2. / len(self.layers)) + 1. / len(self.layers)
        if len(input_shape) == 1:  #if layers are 1-D
            for l_id in range(len(self.layers) - 1):
                w_shape = self.layers[l_id + 1].shape + self.layers[l_id].shape
                l_coords.append(
                    np.array(
                        list(
                            product(
                                (np.arange(-1., 1., 2. /
                                           self.layers[l_id + 1].shape[0]) +
                                 1. / self.layers[l_id + 1].shape[0]).tolist(),
                                (np.arange(-1., 1., 2. /
                                           self.layers[l_id + 0].shape[0]) +
                                 1. / self.layers[l_id + 0].shape[0]
                                 ).tolist()))).reshape(w_shape + (2, )))

                l_coords[-1] = np.concatenate((np.array(
                    [(l_axis[l_id], l_axis[l_id + 1])] *
                    (l_coords[-1].shape[0] *
                     l_coords[-1].shape[1])).reshape(l_coords[-1].shape[:-1] +
                                                     (2, )), l_coords[-1]),
                                              axis=-1)
        elif len(input_shape) == 2:  #if layers are 2-D
            for l_id in range(len(self.layers) - 1):
                w_shape = self.layers[l_id + 1].shape + self.layers[l_id].shape
                l_coords.append(
                    np.array(
                        list(
                            product(
                                (np.arange(-1., 1., 2. /
                                           self.layers[l_id + 1].shape[0]) +
                                 1. / self.layers[l_id + 1].shape[0]).tolist(),
                                (np.arange(-1., 1., 2. /
                                           self.layers[l_id + 1].shape[1]) +
                                 1. / self.layers[l_id + 1].shape[1]).tolist(),
                                (np.arange(-1., 1.,
                                           2. / self.layers[l_id].shape[0]) +
                                 1. / self.layers[l_id].shape[0]).tolist(),
                                (np.arange(-1., 1.,
                                           2. / self.layers[l_id].shape[1]) +
                                 1. / self.layers[l_id].shape[1]
                                 ).tolist()))).reshape(w_shape + (4, )))
                l_coords[-1] = np.concatenate((np.array(
                    [(l_axis[l_id], l_axis[l_id + 1])] *
                    (l_coords[-1].shape[0] * l_coords[-1].shape[1] *
                     l_coords[-1].shape[2] *
                     l_coords[-1].shape[3])).reshape(l_coords[-1].shape[:-1] +
                                                     (2, )), l_coords[-1]),
                                              axis=-1)
        elif len(input_shape) == 3:
            for l_id in range(len(self.layers) - 1):  #if layers are 3-D
                w_shape = self.layers[l_id + 1].shape + self.layers[l_id].shape
                l_coords.append(
                    np.array(
                        list(
                            product(
                                (np.arange(-1., 1., 2. /
                                           self.layers[l_id + 1].shape[0]) +
                                 1. / self.layers[l_id + 1].shape[0]).tolist(),
                                (np.arange(-1., 1., 2. /
                                           self.layers[l_id + 1].shape[1]) +
                                 1. / self.layers[l_id + 1].shape[1]).tolist(),
                                (np.arange(-1., 1., 2. /
                                           self.layers[l_id + 1].shape[2]) +
                                 1. / self.layers[l_id + 1].shape[2]).tolist(),
                                (np.arange(-1., 1.,
                                           2. / self.layers[l_id].shape[0]) +
                                 1. / self.layers[l_id].shape[0]).tolist(),
                                (np.arange(-1., 1.,
                                           2. / self.layers[l_id].shape[1]) +
                                 1. / self.layers[l_id].shape[1]).tolist(),
                                (np.arange(-1., 1.,
                                           2. / self.layers[l_id].shape[2]) +
                                 1. / self.layers[l_id].shape[2]
                                 ).tolist()))).reshape(w_shape + (4, )))
                l_coords[-1] = np.concatenate((np.array(
                    [(l_axis[l_id], l_axis[l_id + 1])] *
                    (l_coords[-1].shape[0] * l_coords[-1].shape[1] *
                     l_coords[-1].shape[2] * l_coords[-1].shape[3] *
                     l_coords[-1].shape[4] *
                     l_coords[-1].shape[5])).reshape(l_coords[-1].shape[:-1] +
                                                     (2, )), l_coords[-1]),
                                              axis=-1)
        self.coords = np.array(l_coords)
Exemple #6
0
class Model:
    print_fps = False
    print_score = False
    gen_idx = 0

    def __init__(self, maxframes):
        self.settings = self.initSettings()
        self.X, self.Y = self.loadData()
        self.crashed = False
        self.reader = GenomeReader(self)
        self.evolution = Evolution(self)
        self.evolution.loadGenomes('../res/genomes', 10)
        self.score = 0
        self.best = 999999

        self.startThreads()

    """INITIALIZATION"""

    def initSettings(self):
        settings = {}
        with open('../res/settings.txt', 'r') as f:
            for line in f:
                if len(line) > 1 and not line[0] == '#':
                    line_data = (line.rstrip()).split("=")
                    line_data = [(d.rstrip()).lstrip() for d in line_data]
                    settings[line_data[0]] = line_data[
                        1] if not line_data[1].isdigit() else float(
                            line_data[1])
        return settings

    def loadData(self):
        df = pd.read_csv('../../train.csv')
        X = df[[c for c in df.columns if c != 'SalePrice']]
        X_float = X.select_dtypes(exclude=['object']).fillna(0)
        y = df['SalePrice']
        X.fillna('None', inplace=True)
        one_hot = pd.get_dummies(df)
        return (one_hot, y)

    def loadGenome(self):
        reader = GenomeReader(self)
        genome = reader.makeGenome('../res/genomes/best.dna', self)
        return genome

    def loadNetwork(self, genome):
        return Brain(genome, self)

    def startThreads(self):
        m_thread = MyThread(3, "ModelThread", self.loop)
        m_thread.start()
        m_thread.join()

    def reset(self):
        (self.gen_idx, genome) = self.evolution.getNextGenome()
        self.genome = genome
        self.network = self.loadNetwork(self.genome)
        self.score = 0

    """GAME LOOP"""

    def loop(self):
        x = [row.tolist() for _, row in self.X.iterrows()]
        y = [price for price in self.Y]
        errs = [0] * len(x)
        epoch = 0
        while not self.crashed:
            epoch += 1
            if epoch % 10 == 0:
                self.settings = self.initSettings()
                self.sim_frames = int(self.settings['sim_frames'])
            self.reset()
            errs = [0] * len(x)

            for i, e in enumerate(x):
                pred = max(0, self.network.query(e)[0])
                true = y[i]
                errs[i] = (np.log(pred + 1) - np.log(true + 1))**2

            rmsle = np.sqrt(np.mean(errs))
            self.evolution.reportFitness(self.gen_idx, 10. / rmsle)
            print(str(epoch) + " -> " + str(rmsle), end='\r')
            if rmsle < self.best:
                self.best = rmsle
                print("BEST: %s                                           " %
                      (str(rmsle)),
                      end='\r')

    """GETTER METHODS"""

    def getSettings(self):
        return self.settings

    def getCrashed(self):
        return self.crashed

    def getGenome(self, name='player'):
        return self.entities[name].getGenome()

    def getNetwork(self, name='player'):
        return self.entities[name].getNetwork()

    def getScore(self):
        return self.score

    """SETTER METHODS"""

    def setCrashed(self, boolean):
        self.crashed = boolean
Exemple #7
0
class Model:
    grid = []
    manual = False
    print_fps = True
    print_score = False
    gen_idx = 0

    map_name = "02.jpg"

    def __init__(self, maxframes):
        self.settings = self.initSettings()
        self.sim_frames = int(self.settings['sim_frames'])
        self.controller = Controller(self)
        self.view = View(self)
        self.crashed = False
        self.grid = self.initGrid()
        self.keys = {}
        self.reader = GenomeReader(self)

        self.evolution = Evolution(self)
        self.evolution.loadGenomes('../res/genomes', 1000)

        self.entities = {
            'food':
            Consumable('food', 400, 300, 'Food', 0.5, self),
            'player':
            NPC('player', 400, 220, 2, 10, 10, 'PC', 1,
                self.reader.makeGenome('../res/genomes/000000.dna'), self)
        }
        self.grid = self.addEntities2Grid()

        self.score = 0
        self.maxframes = 0

        self.startThreads()

    """INITIALIZATION"""

    def initSettings(self):
        settings = {}
        with open('../res/settings.txt', 'r') as f:
            for line in f:
                if len(line) > 1 and not line[0] == '#':
                    line_data = (line.rstrip()).split("=")
                    line_data = [(d.rstrip()).lstrip() for d in line_data]
                    settings[line_data[0]] = line_data[
                        1] if not line_data[1].isdigit() else float(
                            line_data[1])
        return settings

    def initGrid(self):
        self.builder = GridCreator(self)
        grid = self.builder.buildGrid("../res/grids/" + self.map_name)
        return grid

    def addEntities2Grid(self):
        return self.builder.addEntities(self.grid)

    def loadGenome(self):
        reader = GenomeReader(self)
        genome = reader.makeGenome('../res/genomes/000000.dna')
        return genome

    def loadNetwork(self, genome):
        return Brain(genome)

    def startThreads(self):
        c_thread = self.controller.start()
        v_thread = self.view.start()
        m_thread = MyThread(3, "ModelThread", self.loop)
        c_thread.start()
        v_thread.start()
        m_thread.start()
        c_thread.join()
        v_thread.join()
        m_thread.join()

    def reset(self):
        (self.gen_idx, genome) = self.evolution.getNextGenome()
        self.entities = {
            'food': Consumable('food', 400, 300, 'Food', 0.5, self),
            'player': NPC('player', 400, 220, 2, 10, 10, 'PC', 1, genome, self)
        }
        self.grid = self.addEntities2Grid()
        self.keys = {}
        self.genome = self.loadGenome()
        self.network = self.loadNetwork(self.genome)
        self.score = 0

    """GAME LOOP"""

    def loop(self):
        start_time = time.time()
        last_frame_time = time.time()
        tmp = 0
        epoch = 0
        stop = False
        while not self.crashed:
            epoch += 1
            if epoch % 10 == 0:
                self.settings = self.initSettings()
                self.sim_frames = int(self.settings['sim_frames'])
            self.reset()
            c_frame = 0
            stopped = 0
            while not self.crashed and c_frame < self.sim_frames:
                tmp += 1
                c_frame += 1
                last_frame_time = self.sleep(last_frame_time)
                for _, e in self.entities.items():
                    if e.canUpdate():
                        (oldx, oldy, newx, newy) = e.update()
                        #update position in the grid
                        if oldx != newx or oldy != newy:
                            stopped = 0
                            self.grid[oldx][oldy].remEntity(e.getName())
                            self.grid[newx][newy].addEntity(e.getName())
                            if self.grid[newx][newy].contains('food'):
                                self.grid[newx][newy].remEntity('food')
                                self.spawnFood()
                                self.score += 1
                                if self.print_score:
                                    print("Score: " + str(self.score),
                                          end='\r')
                        else:
                            stopped += 1

                if tmp % 100 == 0:
                    if self.print_fps:
                        print("Running @ %.2f fps" %
                              (float(tmp) / (time.time() - start_time)),
                              end='\r')
                    start_time = time.time()
                    tmp = 0
                if stopped >= 300:
                    self.score -= 1
                    stopped = 0
                    break
            self.evolution.reportFitness(self.gen_idx, self.score + 1.)
            c_frame = 0

    def sleep(self, last_frame_time):
        sleep_time = 1. / self.settings['game_FPS'] - (time.time() -
                                                       last_frame_time)
        if sleep_time > 0:
            time.sleep(sleep_time)
        return last_frame_time + 1. / self.settings['game_FPS']

    def spawnFood(self):
        (x, y) = (random.randint(0, 23), random.randint(0, 19))
        while self.isBlocked(x * 32 + 16, y * 32 + 16):
            #print( str(x) + "," + str(y) )
            (x, y) = (random.randint(0, 23), random.randint(0, 19))
        self.entities['food'] = Consumable('food', x * 32 + 16, y * 32 + 16,
                                           'Food', 0.5, self)
        self.grid[x][y].addEntity('food')

    """GETTER METHODS"""

    def isBlocked(self, x, y, name=None):
        (x_grid, y_grid) = self.getGridPosition(x, y)
        tile = self.grid[x_grid][y_grid]
        if tile.isEmpty():
            return False
        else:
            contents = [
                n for n in tile.getContents()
                if (n == 'wall' or self.entities[n].getBlocking())
            ]
            if name == None and len(contents) > 0:
                return True
            else:
                return not len([n for n in contents if n != name]) == 0

    def getSettings(self):
        return self.settings

    def getCrashed(self):
        return self.crashed

    def getKey(self, key):
        try:
            return self.keys[key]
        except KeyError:
            return False

    def getEntities(self):
        return self.entities

    def getGridPosition(self, x, y):
        return (int((x) / 32), int((y) / 32))

    def getGrid(self):
        return self.grid

    def getGenome(self, name='player'):
        return self.entities[name].getGenome()

    def getNetwork(self, name='player'):
        return self.entities[name].getNetwork()

    def getMapName(self):
        return self.map_name

    def getScore(self):
        return self.score

    """SETTER METHODS"""

    def setCrashed(self, boolean):
        self.crashed = boolean

    def setKey(self, key, boolean):
        self.keys[key] = boolean
Exemple #8
0
class Controller:
    """
    Class which glues the project components together
    """
    def __init__(self):
        self.minimap = None
        self.connections = None
        self.vehicles = None
        self.layers = None

        self.evolution = None
        self.presenter = None
        self.core = None
        self.ai = None

    def load_system(self, system, ai):
        """
        Load the system from a YAML file
        """
        self.ai = ai

        with open(system, 'r') as f:
            system = yaml.load(f)

        self.minimap = system['minimap']
        self.connections = system['connections']

        self.vehicles = system.get('vehicles', 40)

        self.core = Core(self.minimap, self.connections, self.vehicles)

        hidden_layers = layers = system.get('layers', [])
        side_neurons = len(self.core.junction_queues)
        self.layers = [side_neurons] + hidden_layers + [side_neurons]
        self.evolution = Evolution(self.layers)

    def present(self):
        """
        Called when the user wants to run the simulation with GUI
        """
        nn = self.evolution.get_nn(numpy.load(self.ai)) if self.ai else None
        self.core.reset(nn)

        self.presenter = Presenter(self.connections, self.minimap, (900, 900))
        self.presenter.main_loop(self.core)

    def validate(self):
        pass

    def develop(self):
        """
        Called when the user wants to train the AI for a given system from YAML
        """
        try:
            while True:
                self.__train()
                print('')

        finally:
            with open(self.ai, 'wb') as f:
                numpy.save(f, self.evolution.best_fit['weights'])

    def __train(self):
        """
        Evaluate the population of current generation and breed them
        """
        for index, individual in enumerate(self.evolution.queue):
            self.evolution.rated(individual, self.__rate(individual))

            if index % 5 == 0:
                print('.', end='')
                sys.stdout.flush()

        self.evolution.breed()

    def __rate(self, individual):
        """
        Evaluate how good the AI was
        """
        self.core.reset(self.evolution.get_nn(individual['weights']))

        stucked = 0
        for _ in range(TEST_STEPS):
            self.core.step()

            for link in self.core.links:
                stucked += link.stucked

            for ap in self.core.access_points:
                if ap.inactive:
                    stucked += ap.to_generate
        return stucked