def process_original_gwas(args, imputed): logging.info("Processing GWAS file %s", args.gwas_file) g = pandas.read_table(args.gwas_file) g = g.assign(current_build="hg38", imputation_status="original")[COLUMN_ORDER] # Remember the palindromic snps are to be excluded from the input GWAS; logging.info("Read %d variants", g.shape[0]) if not args.keep_all_observed: if args.keep_criteria == "GTEX_VARIANT_ID": g = g.loc[~g.panel_variant_id.isin(imputed.panel_variant_id)] elif args.keep_criteria == "CHR_POS": g = g.assign(k=gwas_k(g)) imputed = imputed.assign(k=gwas_k(imputed)) g = g.loc[~g.k.isin({x for x in imputed.k})] g.drop("k", axis=1, inplace=True) imputed.drop("k", axis=1, inplace=True) else: raise RuntimeError("Unsupported keep option") logging.info("Kept %d variants as observed", g.shape[0]) g = pandas.concat([g, imputed])[COLUMN_ORDER] logging.info("%d variants", g.shape[0]) logging.info("Filling median") g = Genomics.fill_column_to_median(g, "sample_size", numpy.int32) logging.info("Sorting by chromosome-position") g = Genomics.sort(g) logging.info("Saving") Utilities.save_dataframe(g, args.output) return g[["panel_variant_id"]]
def by_chromosome(context, chromosome): vm = context.vmf.read_row_group(chromosome - 1).to_pandas() if args.frequency_filter: vm = filter_by_frequency(vm, args.frequency_filter) g = context.get_genotype_file(chromosome) regions = context.regions regions = regions[regions.chr == "chr{}".format(chromosome)] for i, region in enumerate(regions.itertuples()): logging.log(9, "Processing region in chr %d: %d/%d", chromosome, i + 1, regions.shape[0]) vmw = Genomics.entries_for_window(chromosome, region.start - args.window, region.stop + args.window, vm) ids = vmw.id.values logging.log(9, "%d variants", len(ids)) d = Parquet._read(g, columns=ids, skip_individuals=True) d = numpy.array([d[x] for x in ids], dtype=numpy.float32) if context.args.standardise_geno: cov = numpy.corrcoef(d, ddof=1).astype(numpy.float32, copy=False) else: cov = numpy.cov(d).astype(numpy.float32, copy=False) logging.log(9, "%d rows", cov.shape[0]) context.sink(cov, ids, region)
def clean_up(d): d = d.assign(sample_size=[ int(x) if not math.isnan(x) else "NA" for x in d.sample_size ]) if "chromosome" in d.columns.values and "position" in d.columns.values: d = Genomics.sort(d) return d
def process(w, s, c, data, data_annotation_, features, features_metadata, x_weights, summary_fields, train, postfix=None, nested_folds=10, use_individuals=None): gene_id_ = data_annotation_.gene_id if postfix is None else "{}-{}".format(data_annotation_.gene_id, postfix) logging.log(8, "loading data") d_ = Parquet._read(data, [data_annotation_.gene_id], specific_individuals=use_individuals) features_ = Genomics.entries_for_gene_annotation(data_annotation_, args.window, features_metadata) if x_weights is not None: x_w = features_[["id"]].merge(x_weights[x_weights.gene_id == data_annotation_.gene_id], on="id") features_ = features_[features_.id.isin(x_w.id)] x_w = robjects.FloatVector(x_w.w.values) else: x_w = None if features_.shape[0] == 0: logging.log(9, "No features available") return features_data_ = Parquet._read(features, [x for x in features_.id.values], specific_individuals=[x for x in d_["individual"]]) logging.log(8, "training") weights, summary = train(features_data_, features_, d_, data_annotation_, x_w, not args.dont_prune, nested_folds) if weights.shape[0] == 0: logging.log(9, "no weights, skipping") return logging.log(8, "saving") weights = weights.assign(gene=data_annotation_.gene_id). \ merge(features_.rename(columns={"id": "feature", "allele_0": "ref_allele", "allele_1": "eff_allele"}), on="feature"). \ rename(columns={"feature": "varID"}). \ assign(gene=gene_id_) weights = weights[["gene", "rsid", "varID", "ref_allele", "eff_allele", "weight"]] if args.output_rsids: weights.loc[weights.rsid == "NA", "rsid"] = weights.loc[weights.rsid == "NA", "varID"] w.write(weights.to_csv(sep="\t", index=False, header=False, na_rep="NA").encode()) summary = summary. \ assign(gene=gene_id_, genename=data_annotation_.gene_name, gene_type=data_annotation_.gene_type). \ rename(columns={"n_features": "n_snps_in_window", "n_features_in_model": "n.snps.in.model", "zscore_pval": "pred.perf.pval", "rho_avg_squared": "pred.perf.R2", "cv_converged":"nested_cv_converged"}) summary["pred.perf.qval"] = None summary = summary[summary_fields] s.write(summary.to_csv(sep="\t", index=False, header=False, na_rep="NA").encode()) var_ids = [x for x in weights.varID.values] cov = numpy.cov([features_data_[k] for k in var_ids], ddof=1) ids = [x for x in weights.rsid.values] if args.output_rsids else var_ids cov = matrices._flatten_matrix_data([(gene_id_, ids, cov)]) for cov_ in cov: l = "{} {} {} {}\n".format(cov_[0], cov_[1], cov_[2], cov_[3]).encode() c.write(l)
def build_regions(annotation, chromosome, sub_jobs, window): results = [] genes = [] for i in range(0, sub_jobs): s = Genomics.entries_for_split(chromosome, sub_jobs, i, annotation) start = numpy.min(s.start) - window if start < 0: start = 0 end = numpy.max(s.end) + window results.append((i + 1, start, end)) genes.append(s.gene_id.values) return pandas.DataFrame(results, columns=["split", "start", "end"]), genes
def run(args): if os.path.exists(args.output): logging.info("output path %s exists. Nope.", args.output) return start = timer() logging.info("Parsing input GWAS") d = GWAS.load_gwas(args.gwas_file, args.output_column_map, force_special_handling=args.force_special_handling, skip_until_header=args.skip_until_header, separator=args.separator, handle_empty_columns=args.handle_empty_columns, input_pvalue_fix=args.input_pvalue_fix, enforce_numeric_columns=args.enforce_numeric_columns) logging.info("loaded %d variants", d.shape[0]) d = pre_process_gwas(args, d) if args.fill_from_snp_info: d = fill_coords(args, d) if args.chromosome_format: d = d.assign(chromosome=Genomics.to_int(d.chromosome)) d = d.assign(chromosome=["chr{}".format(x) for x in d.chromosome]) if args.liftover: d = liftover(args, d) if args.snp_reference_metadata: d = fill_from_metadata(args, d, extra_col_dict=load_extra_col_key_value_pairs( args.meta_extra_col)) if args.output_order: order = args.output_order for c in order: if not c in d: d = d.assign(**{c: numpy.nan}) d = d[order] d = clean_up(d) logging.info("Saving...") Utilities.save_dataframe(d, args.output, fill_na=True) end = timer() logging.info("Finished converting GWAS in %s seconds", str(end - start))
def count_variants(chromosome, start, end, vf, m, last_chromosome, args): try: chromosome = int(chromosome.split("chr")[1]) start = int(start) end = int(end) if chromosome != last_chromosome: logging.info("Reading chromosome %d", chromosome) m = vf.read_row_group(chromosome - 1).to_pandas() last_chromosome = chromosome if args.frequency_filter: logging.log(9, "Filtering by frequency") m = m[(m.allele_1_frequency > args.frequency_filter) & (m.allele_1_frequency < 1 - args.frequency_filter)] v = Genomics.entries_for_window(chromosome, start, end, m) count = v.shape[0] except: count = "NA" return count, m, last_chromosome
def fill_from_metadata(args, d): m = get_panel_variants(args, d) if "panel_variant_id" in d: d = d.drop(["panel_variant_id"]) logging.info("alligning alleles") d = Genomics.match(d, m) if not args.keep_all_original_entries: d = d.loc[~d.panel_variant_id.isna()] logging.info("%d variants after restricting to reference variants", d.shape[0]) logging.info("Ensuring variant uniqueness") d = ensure_uniqueness(d) logging.info("%d variants after ensuring uniqueness", d.shape[0]) logging.info("Checking for missing frequency entries") d["frequency"] = filled_frequency(d, m) return d
def pre_process_gwas(args, d): if args.split_column: for s in args.split_column: d = PandasHelpers.split_column(d, s) if "position" in d: d = d.assign(position=d.position.astype(int)) if args.insert_value: for spec in args.insert_value: d = insert_value(d, spec) # Some GWAs have NA's in fre if "frequency" in d: d["frequency"] = Genomics.to_number(d.frequency) if "n_controls" in d: if "n_cases" in d: logging.info("Adding up to sample size") d["sample_size"] = d.n_cases + d.n_controls elif "sample_size" in d: logging.info("difference to cases") d["n_cases"] = d.sample_size - d.n_controls return d
def run(args): Utilities.maybe_create_folder(args.intermediate_folder) Utilities.ensure_requisite_folders(args.output_prefix) logging.info("Opening data") p_ = re.compile(args.data_name_pattern) f = [x for x in sorted(os.listdir(args.data_folder)) if p_.search(x)] tissue_names = [p_.search(x).group(1) for x in f] data = [] for i in range(0, len(tissue_names)): logging.info("Loading %s", tissue_names[i]) data.append((tissue_names[i], pq.ParquetFile(os.path.join(args.data_folder, f[i])))) data = collections.OrderedDict(data) available_data = { x for p in data.values() for x in p.metadata.schema.names } logging.info("Preparing output") WEIGHTS_FIELDS = [ "gene", "rsid", "varID", "ref_allele", "eff_allele", "weight" ] SUMMARY_FIELDS = [ "gene", "genename", "gene_type", "alpha", "n_snps_in_window", "n.snps.in.model", "rho_avg", "pred.perf.R2", "pred.perf.pval" ] Utilities.ensure_requisite_folders(args.output_prefix) if args.skip_regression: weights, summaries, covariances = None, None, None else: weights, summaries, covariances = setup_output(args.output_prefix, tissue_names, WEIGHTS_FIELDS, SUMMARY_FIELDS) logging.info("Loading data annotation") data_annotation = StudyUtilities._load_gene_annotation( args.data_annotation) data_annotation = data_annotation[data_annotation.gene_id.isin( available_data)] if args.chromosome or (args.sub_batches and args.sub_batch): data_annotation = StudyUtilities._filter_gene_annotation( data_annotation, args.chromosome, args.sub_batches, args.sub_batch) logging.info("Kept %i entries", data_annotation.shape[0]) logging.info("Opening features annotation") if not args.chromosome: features_metadata = pq.read_table(args.features_annotation).to_pandas() else: features_metadata = pq.ParquetFile( args.features_annotation).read_row_group(args.chromosome - 1).to_pandas() if args.chromosome and args.sub_batches: logging.info("Trimming variants") features_metadata = StudyUtilities.trim_variant_metadata_on_gene_annotation( features_metadata, data_annotation, args.window) if args.rsid_whitelist: logging.info("Filtering features annotation") whitelist = TextFileTools.load_list(args.rsid_whitelist) whitelist = set(whitelist) features_metadata = features_metadata[features_metadata.rsid.isin( whitelist)] logging.info("Opening features") features = pq.ParquetFile(args.features) logging.info("Setting R seed") seed = numpy.random.randint(1e8) if args.run_tag: d = pandas.DataFrame({ "run": [args.run_tag], "cv_seed": [seed] })[["run", "cv_seed"]] for t in tissue_names: Utilities.save_dataframe( d, "{}_{}_runs.txt.gz".format(args.output_prefix, t)) failed_run = False try: for i, data_annotation_ in enumerate(data_annotation.itertuples()): logging.log(9, "processing %i/%i:%s", i + 1, data_annotation.shape[0], data_annotation_.gene_id) logging.log(8, "loading data") d_ = {} for k, v in data.items(): d_[k] = Parquet._read(v, [data_annotation_.gene_id], to_pandas=True) features_ = Genomics.entries_for_gene_annotation( data_annotation_, args.window, features_metadata) if features_.shape[0] == 0: logging.log(9, "No features available") continue features_data_ = Parquet._read(features, [x for x in features_.id.values], to_pandas=True) features_data_["id"] = range(1, features_data_.shape[0] + 1) features_data_ = features_data_[["individual", "id"] + [x for x in features_.id.values]] logging.log(8, "training") prepare_ctimp(args.script_path, seed, args.intermediate_folder, data_annotation_, features_, features_data_, d_) del (features_data_) del (d_) if args.skip_regression: continue subprocess.call([ "bash", _execution_script(args.intermediate_folder, data_annotation_.gene_id) ]) w = pandas.read_table(_weights(args.intermediate_folder, data_annotation_.gene_id), sep="\s+") s = pandas.read_table(_summary(args.intermediate_folder, data_annotation_.gene_id), sep="\s+") for e_, entry in enumerate(s.itertuples()): entry_weights = w[["SNP", "REF.0.", "ALT.1.", entry.tissue]].rename( columns={ "SNP": "varID", "REF.0.": "ref_allele", "ALT.1.": "eff_allele", entry.tissue: "weight" }) entry_weights = entry_weights[entry_weights.weight != 0] entry_weights = entry_weights.assign( gene=data_annotation_.gene_id) entry_weights = entry_weights.merge(features_, left_on="varID", right_on="id", how="left") entry_weights = entry_weights[WEIGHTS_FIELDS] if args.output_rsids: entry_weights.loc[entry_weights.rsid == "NA", "rsid"] = entry_weights.loc[ entry_weights.rsid == "NA", "varID"] weights[entry.tissue].write( entry_weights.to_csv(sep="\t", index=False, header=False, na_rep="NA").encode()) entry_summary = s[s.tissue == entry.tissue].rename( columns={ "zscore_pval": "pred.perf.pval", "rho_avg_squared": "pred.perf.R2" }) entry_summary = entry_summary.assign( gene=data_annotation_.gene_id, alpha=0.5, genename=data_annotation_.gene_name, gene_type=data_annotation_.gene_type, n_snps_in_window=features_.shape[0]) entry_summary["n.snps.in.model"] = entry_weights.shape[0] #must repeat strings beause of weird pandas indexing issue entry_summary = entry_summary.drop( ["R2", "n", "tissue"], axis=1)[[ "gene", "genename", "gene_type", "alpha", "n_snps_in_window", "n.snps.in.model", "rho_avg", "pred.perf.R2", "pred.perf.pval" ]] summaries[entry.tissue].write( entry_summary.to_csv(sep="\t", index=False, header=False, na_rep="NA").encode()) features_data_ = Parquet._read( features, [x for x in entry_weights.varID.values], to_pandas=True) var_ids = [x for x in entry_weights.varID.values] cov = numpy.cov([features_data_[k] for k in var_ids], ddof=1) ids = [x for x in entry_weights.rsid.values ] if args.output_rsids else var_ids cov = matrices._flatten_matrix_data([(data_annotation_.gene_id, ids, cov)]) for cov_ in cov: l = "{} {} {} {}\n".format(cov_[0], cov_[1], cov_[2], cov_[3]).encode() covariances[entry.tissue].write(l) if not args.keep_intermediate_folder: logging.info("Cleaning up") shutil.rmtree( _intermediate_folder(args.intermediate_folder, data_annotation_.gene_id)) if args.MAX_M and i >= args.MAX_M: logging.info("Early abort") break except Exception as e: logging.info("Exception running model training:\n%s", traceback.format_exc()) failed_run = True finally: pass # if not args.keep_intermediate_folder: # shutil.rmtree(args.intermediate_folder) if not args.skip_regression: set_down(weights, summaries, covariances, tissue_names, failed_run) logging.info("Finished")
def run(args): wp = args.output_prefix + "_weights.txt.gz" if os.path.exists(wp): logging.info("Weights output exists already, delete it or move it") return sp = args.output_prefix + "_summary.txt.gz" if os.path.exists(sp): logging.info("Summary output exists already, delete it or move it") return cp = args.output_prefix + "_covariance.txt.gz" if os.path.exists(wp): logging.info("covariance output exists already, delete it or move it") return r = args.output_prefix + "_run.txt.gz" if os.path.exists(wp): logging.info("run output exists already, delete it or move it") return logging.info("Starting") Utilities.ensure_requisite_folders(args.output_prefix) logging.info("Opening data") data = pq.ParquetFile(args.data) available_data = {x for x in data.metadata.schema.names} logging.info("Loading data annotation") data_annotation = StudyUtilities.load_gene_annotation(args.data_annotation, args.chromosome, args.sub_batches, args.sub_batch, args.simplify_data_annotation) data_annotation = data_annotation[data_annotation.gene_id.isin(available_data)] if args.gene_whitelist: logging.info("Applying gene whitelist") data_annotation = data_annotation[data_annotation.gene_id.isin(set(args.gene_whitelist))] logging.info("Kept %i entries", data_annotation.shape[0]) logging.info("Opening features annotation") if not args.chromosome: features_metadata = pq.read_table(args.features_annotation).to_pandas() else: features_metadata = pq.ParquetFile(args.features_annotation).read_row_group(args.chromosome-1).to_pandas() if args.output_rsids: if not args.keep_highest_frequency_rsid_entry and features_metadata[(features_metadata.rsid != "NA") & features_metadata.rsid.duplicated()].shape[0]: logging.warning("Several variants map to a same rsid (hint: multiple INDELS?).\n" "Can't proceed. Consider the using the --keep_highest_frequency_rsid flag, or models will be ill defined.") return if args.chromosome and args.sub_batches: logging.info("Trimming variants") features_metadata = StudyUtilities.trim_variant_metadata_on_gene_annotation(features_metadata, data_annotation, args.window) logging.info("Kept %d", features_metadata.shape[0]) if args.variant_call_filter: logging.info("Filtering variants by average call rate") features_metadata = features_metadata[features_metadata.avg_call > args.variant_call_filter] logging.info("Kept %d", features_metadata.shape[0]) if args.variant_r2_filter: logging.info("Filtering variants by imputation R2") features_metadata = features_metadata[features_metadata.r2 > args.variant_r2_filter] logging.info("Kept %d", features_metadata.shape[0]) if args.variant_variance_filter: logging.info("Filtering variants by (dosage/2)'s variance") features_metadata = features_metadata[features_metadata["std"]/2 > numpy.sqrt(args.variant_variance_filter)] logging.info("Kept %d", features_metadata.shape[0]) if args.discard_palindromic_snps: logging.info("Discarding palindromic snps") features_metadata = Genomics.discard_gtex_palindromic_variants(features_metadata) logging.info("Kept %d", features_metadata.shape[0]) if args.rsid_whitelist: logging.info("Filtering features annotation for whitelist") whitelist = TextFileTools.load_list(args.rsid_whitelist) whitelist = set(whitelist) features_metadata = features_metadata[features_metadata.rsid.isin(whitelist)] logging.info("Kept %d", features_metadata.shape[0]) if args.only_rsids: logging.info("discarding non-rsids") features_metadata = StudyUtilities.trim_variant_metadata_to_rsids_only(features_metadata) logging.info("Kept %d", features_metadata.shape[0]) if args.keep_highest_frequency_rsid_entry and features_metadata[(features_metadata.rsid != "NA") & features_metadata.rsid.duplicated()].shape[0]: logging.info("Keeping only the highest frequency entry for every rsid") k = features_metadata[["rsid", "allele_1_frequency", "id"]] k.loc[k.allele_1_frequency > 0.5, "allele_1_frequency"] = 1 - k.loc[k.allele_1_frequency > 0.5, "allele_1_frequency"] k = k.sort_values(by=["rsid", "allele_1_frequency"], ascending=False) k = k.groupby("rsid").first().reset_index() features_metadata = features_metadata[features_metadata.id.isin(k.id)] logging.info("Kept %d", features_metadata.shape[0]) else: logging.info("rsids are unique, no need to restrict to highest frequency entry") if args.features_weights: logging.info("Loading weights") x_weights = get_weights(args.features_weights, {x for x in features_metadata.id}) logging.info("Filtering features metadata to those available in weights") features_metadata = features_metadata[features_metadata.id.isin(x_weights.id)] logging.info("Kept %d entries", features_metadata.shape[0]) else: x_weights = None logging.info("Opening features") features = pq.ParquetFile(args.features) logging.info("Setting R seed") s = numpy.random.randint(1e8) set_seed(s) if args.run_tag: d = pandas.DataFrame({"run":[args.run_tag], "cv_seed":[s]})[["run", "cv_seed"]] Utilities.save_dataframe(d, r) WEIGHTS_FIELDS=["gene", "rsid", "varID", "ref_allele", "eff_allele", "weight"] SUMMARY_FIELDS=["gene", "genename", "gene_type", "alpha", "n_snps_in_window", "n.snps.in.model", "test_R2_avg", "test_R2_sd", "cv_R2_avg", "cv_R2_sd", "in_sample_R2", "nested_cv_fisher_pval", "nested_cv_converged", "rho_avg", "rho_se", "rho_zscore", "pred.perf.R2", "pred.perf.pval", "pred.perf.qval"] train = train_elastic_net_wrapper if args.mode == "elastic_net" else train_ols available_individuals = check_missing(args, data, features) with gzip.open(wp, "w") as w: w.write(("\t".join(WEIGHTS_FIELDS) + "\n").encode()) with gzip.open(sp, "w") as s: s.write(("\t".join(SUMMARY_FIELDS) + "\n").encode()) with gzip.open(cp, "w") as c: c.write("GENE RSID1 RSID2 VALUE\n".encode()) for i,data_annotation_ in enumerate(data_annotation.itertuples()): if args.MAX_M and i>=args.MAX_M: logging.info("Early abort") break logging.log(9, "processing %i/%i:%s", i+1, data_annotation.shape[0], data_annotation_.gene_id) if args.repeat: for j in range(0, args.repeat): logging.log(9, "%i-th reiteration", j) process(w, s, c, data, data_annotation_, features, features_metadata, x_weights, SUMMARY_FIELDS, train, j, nested_folds=args.nested_cv_folds, use_individuals=available_individuals) else: process(w, s, c, data, data_annotation_, features, features_metadata, x_weights, SUMMARY_FIELDS, train, nested_folds=args.nested_cv_folds, use_individuals=available_individuals) logging.info("Finished")
def run(args): if os.path.exists(args.output): logging.info("Output already exists, either delete it or move it") return logging.info("Loading group") groups = pandas.read_table(args.group) groups = groups.assign(chromosome = groups.gtex_intron_id.str.split(":").str.get(0)) groups = groups.assign(position=groups.gtex_intron_id.str.split(":").str.get(1)) groups = Genomics.sort(groups) logging.info("Getting parquet genotypes") file_map = get_file_map(args) logging.info("Getting genes") with sqlite3.connect(args.model_db_group_key) as connection: # Pay heed to the order. This avoids arbitrariness in sqlite3 loading of results. extra = pandas.read_sql("SELECT * FROM EXTRA order by gene", connection) extra = extra[extra["n.snps.in.model"] > 0] individuals = TextFileTools.load_list(args.individuals) if args.individuals else None logging.info("Processing") Utilities.ensure_requisite_folders(args.output) genes_ = groups[["chromosome", "position", "gene_id"]].drop_duplicates() with gzip.open(args.output, "w") as f: f.write("GENE RSID1 RSID2 VALUE\n".encode()) with sqlite3.connect(args.model_db_group_key) as db_group_key: with sqlite3.connect(args.model_db_group_values) as db_group_values: for i,t_ in enumerate(genes_.itertuples()): g_ = t_.gene_id chr_ = t_.chromosome.split("chr")[1] logging.log(8, "Proccessing %i/%i:%s", i+1, len(genes_), g_) if not n_.search(chr_): logging.log(9, "Unsupported chromosome: %s", chr_) continue dosage = file_map[int(chr_)] group = groups[groups.gene_id == g_] wg=[] for value in group.intron_id: wk = pandas.read_sql("select * from weights where gene = '{}';".format(value), db_group_values) if wk.shape[0] == 0: continue wg.append(wk) if len(wg) > 0: wg = pandas.concat(wg) w = pandas.concat([wk, wg])[["varID", "rsid"]].drop_duplicates() else: w = wk[["varID", "rsid"]].drop_duplicates() if w.shape[0] == 0: logging.log(8, "No data, skipping") continue if individuals: d = Parquet._read(dosage, columns=w.varID.values, specific_individuals=individuals) del d["individual"] else: d = Parquet._read(dosage, columns=w.varID.values, skip_individuals=True) var_ids = list(d.keys()) if len(var_ids) == 0: if len(w.varID.values) == 1: logging.log(9, "workaround for single missing genotype at %s", g_) d = {w.varID.values[0]:[0,1]} else: logging.log(9, "No genotype available for %s, skipping",g_) next if args.output_rsids: ids = [x for x in pandas.DataFrame({"varID": var_ids}).merge(w[["varID", "rsid"]], on="varID").rsid.values] else: ids = var_ids c = numpy.cov([d[x] for x in var_ids]) c = matrices._flatten_matrix_data([(g_, ids, c)]) for entry in c: l = "{} {} {} {}\n".format(entry[0], entry[1], entry[2], entry[3]) f.write(l.encode()) logging.info("Finished building covariance.")