if __name__ == '__main__': # ->> initialization <<- # sec = 'Rect' init_dict = myDict(param_dict) + myDict(prog_control) p = pc.prog_init(section=sec, **init_dict) p.smooth_R = p.smooth_r root = p.folder ''' ->> import data <<- ''' print 'likelihood fname:', p.likelihood_test_fname z_init = 100. # ->> import testing data <<- # dd=rd.rblock(p.likelihood_test_fname, p.ngrid**3*7, \ dtype='float').reshape(7,p.ngrid,p.ngrid,p.ngrid) #disp, disp_model = dd[:3,...], dd[3:,...] bd = 10 disp, disp_model = dd[:3, bd:-bd, bd:-bd, bd:-bd], dd[3:, bd:-bd, bd:-bd, bd:-bd], di = dd[-1, ...] # print 'mean:', disp.min(), disp_model.min() #->> final density <<- # df=rd.rblock(p.original_density_fname, p.ngrid**3, \ dtype='float').reshape(p.ngrid, p.ngrid, p.ngrid) # ->> define some other useful variables <<- #
init_dict = myDict(param_dict) + myDict(prog_control) p = pc.prog_init(section=sec, **init_dict) p.smooth_R = p.smooth_r root = p.folder # ->> import data <<- # if (p.py_import_density_field == True): if p.import_format == 'cita_simulation': p.rec_fname = p.reconstructed_fname + '_' + p.smooth_type + '_R' + str( p.smooth_R) + '.dat' print 'reading data ... ', p.rec_fname f_rec = rd.rblock(p.rec_fname, p.ngrid**3 * 3, dtype='float').reshape(3, p.ngrid, p.ngrid, p.ngrid) drec, d_disp, d_shift = f_rec d_ori = rd.rblock(p.original_density_fname, p.ngrid**3, dtype='float').reshape(p.ngrid, p.ngrid, p.ngrid) print 'density shape:', drec.shape, d_disp.shape, d_shift.shape, d_ori.shape print 'density min/max:', drec.min(), drec.max(), d_disp.min( ), d_disp.max(), d_shift.min(), d_shift.max() else: raise Exception # ->> power spectrum measurement <<- #
} if __name__ == '__main__': # ->> initialization <<- # sec = 'Rect' init_dict = myDict(param_dict) + myDict(prog_control) p = pc.prog_init(section=sec, **init_dict) p.smooth_R = p.smooth_r root = p.folder if (p.cal_rect_transfer_func == True): nblock = 6 dd = rd.rblock(p.raw_disp_field_fname, p.ngrid**3 * nblock, dtype='float').reshape(nblock, p.ngrid, p.ngrid, p.ngrid) #->> discard boundary data <<- # bd = 5 bsize = p.boxsize - 2. * bd * p.boxsize / float(p.ngrid) #bsize=p.boxsize print 'bsize:', bsize disp, disp_model = dd[:3, bd:-bd, bd:-bd, bd:-bd], dd[3:, bd:-bd, bd:-bd, bd:-bd], #disp, disp_model = dd[:3], dd[3:] if True: nplt, ncol = 2, 2 fig,ax=mpl.mysubplots(nplt,ncol_max=ncol,subp_size=5.,\
#->> <<-# print len(pid), pid.min(), pid.max() ll = np.arange(len(pid)) + 1 err = ll - pid print 'len of non-zeros: ', len(np.where(err != 0)[0]) if do_displacement_test: #->> #fn_disp='/mnt/scratch-lustre/xwang/data/baorec/cubep3m_dm_sml_pid/rec_data/stat_disp_0_100.dat' fn_disp = '/mnt/scratch-lustre/xwang/data/baorec/cubep3m_dm_sml_pid/rec_data/disp_0_100.dat' nblock = 6 dd = rd.rblock(fn_disp, p.ngrid**3 * nblock, dtype='float').reshape(nblock, p.ngrid, p.ngrid, p.ngrid) print dd.shape disp, disp_lpt = dd[:3], dd[3:] for i in range(3): print 'disp :', i, disp[i].min(), disp[i].max() if True: # ->> 1D histogram <<- # nplt, ncol = 3, 2 fig,ax=mpl.mysubplots(nplt,ncol_max=ncol,subp_size=5.,\ gap_size=0.5,return_figure=True) n_bin = 500 color = ['g', 'r', 'b', 'y']