Exemple #1
0
def coo2cb(coo, seq):
    mask = np.array([aa != 'G' for aa in seq]).nonzero()
    cb = []
    n = coo[::4][mask]
    ca = coo[1::4][mask]
    c = coo[2::4][mask]
    ori_ca_n = geo.norm(n - ca)
    ori_ca_c = geo.norm(c - ca)
    ori_mid = geo.norm(ori_ca_n + ori_ca_c)
    rot_axis_cb = geo.norm(ori_ca_c - ori_ca_n)
    cb = geo.rotation(ori_mid, rot_axis_cb, T_CB) * R_CB + ca
    return np.array(cb, dtype='float32')
Exemple #2
0
def cal_phipsi(coo):
    ca = coo[::4][1:-1]
    n = coo[3::4]
    c = coo[1::4]

    c_n = geo.norm(n-c)
    n_ca = geo.norm(ca-n[:-1])
    ca_c = geo.norm(c[1:] - ca)

    phi = geo.get_torsion(c_n[:-1], ca_c, n_ca) / np.pi * 180 + 180
    psi = geo.get_torsion(n_ca, c_n[1:], ca_c) / np.pi * 180 + 180

    phi[phi >= 360] -= 360
    psi[psi >= 360] -= 360
    return phi, psi
Exemple #3
0
def pull_back(alpha, state, goal, u_r):
    """
        given that the robot's action was not almost optimal,
        how should the human react?
    """
    center = -u_r + optimal(alpha, state, goal)
    return alpha * center / geo.norm(center)
Exemple #4
0
def cb_args(coo, seq, cb):
    mask = np.array([aa != 'G' for aa in seq]).nonzero()
    n = coo[::4][mask]
    ca = coo[1::4][mask]
    c = coo[2::4][mask]

    ori_ca_n = geo.norm(n - ca)
    ori_ca_c = geo.norm(c - ca)
    ori_mid = geo.norm(ori_ca_n + ori_ca_c)
    rot_axis_cb = geo.norm(ori_ca_c - ori_ca_n)

    ca_cb = cb - ca
    l_ca_cb = geo.get_len(ca_cb)
    ori_ca_cb = geo.norm(ca_cb)

    tor_cb = []
    for i in range(len(cb)):
        tor_cb.append(geo.get_torsion(
            ori_mid[i], ori_ca_cb[i], rot_axis_cb[i]))
    return np.array([l_ca_cb, tor_cb], dtype='float32')
Exemple #5
0
def optimal(alpha, state, goal, _u_r=None):
    """
        optimal generates the optimal control given a
        particular goal.

        We can solve for this analytically, it is the
        vector in the direction of the goal, with norm
        alpha.

        use to get the control that an optimal agent
        acting with a particular goal would do.
    """
    return ((goal - state) / geo.norm(goal - state)) * alpha
Exemple #6
0
def simulate(start, goals, true_goal, Fu_h, Fu_r, prior, alpha=0.1, maxiters=100):
    """
        run a simulation

        start and goals, true goal is an index

        Fu_h is a function generating the human control
        Fu_r is a function generating the robot control

        alpha is maximum norm of step size
        maxiters terminates if goal isn't reached in num of steps

        returns the traj taken and the history of beliefs
    """
    current = np.copy(start)
    goal = goals[true_goal]
    beliefs = prior
    trajectory = [current]
    belief_hist = [beliefs]
    u_hs = []
    u_rs = [np.array([0.0, 0.0])]

    iters = 0
    while geo.norm(current - goal) > alpha and iters < maxiters:
        u_h = Fu_h(alpha, current, goal, u_rs[-1])
        u_hs.append(u_h)
        (u_r, beliefs) = Fu_r(alpha, current, goals, beliefs, u_rs[-1], u_h)
        u_rs.append(u_r)
        belief_hist.append(beliefs)

        if geo.norm(u_r) > alpha + 1e-5:
            raise Exception("sim.simulate: invalid u_r! u_r = " + repr(u_r) + "with norm = " + repr(geo.norm(u_r)))

        current = current + u_r
        trajectory.append(current)
        iters += 1

    return (trajectory, np.asarray(belief_hist), np.asarray(u_hs), np.asarray(u_rs[1:]))
Exemple #7
0
def tor2coo(tor, ca):
    ca_ca = (ca[1:]-ca[:-1])
    l_ca_ca = geo.get_len(ca_ca)
    is_tran = (l_ca_ca//3.4).astype(int).reshape(-1, 1)

    ori_ca_ca = geo.norm(ca_ca)
    cos_3ca = geo.batch_cos(ca_ca[:-1], ca_ca[1:])
    projection_ground = (
        l_ca_ca[1:]*cos_3ca).reshape(-1, 1)*geo.norm(ca_ca[:-1])
    last_projection_ground = l_ca_ca[-2]*cos_3ca[-1]*geo.norm(ca_ca[-1])
    ori_ground = np.concatenate(
        (geo.norm(ca_ca[1:]-projection_ground), geo.norm(last_projection_ground-ca_ca[-2])))

    ori_C = geo.rotation(ori_ground, ori_ca_ca, tor[:, 0].reshape(-1, 1))
    ori_N = geo.rotation(ori_ground, ori_ca_ca, tor[:, 1].reshape(-1, 1))

    C = ori_C * Radius_C[is_tran] + ori_ca_ca*Projection_C[is_tran] + ca[:-1]
    O = ori_C * Radius_O[is_tran] + ori_ca_ca*Projection_O[is_tran] + ca[:-1]
    N = ori_N * Radius_N[is_tran] - ori_ca_ca*Projection_N[is_tran] + ca[1:]

    coo = np.concatenate([ca[np.newaxis, :-1], [C, O, N]]
                         ).swapaxes(0, 1).reshape(-1, 3)
    coo = np.concatenate((coo, ca[np.newaxis, -1]))
    return coo.astype('float32')
Exemple #8
0
 def likelihood(alpha, state, u_h, past_u_r, goal):
     return np.exp(
         beta *
         (geo.norm((state + human.optimal(alpha, state, goal)) - goal) -
          geo.norm((state + u_h) - goal)))
Exemple #9
0
 def cost(u):
     return (sum([
         b * (geo.norm(u) + geo.norm(state + u - g))
         for (g, b) in zip(goals, new_beliefs)
     ]) + lam * ee(u))
Exemple #10
0
def ImageStrucRep(ca, seq, center='ca', resolution=128, box_size=8, compress=True, pad=4, relative_index=True, multiview=False):
    arrays = []
    tgt_x = np.array([0, 1, 0])
    rot_axis_y = tgt_x
    tgt_y = np.array([1, 0, 0])
    ori_x = geo.norm(ca[1:] - ca[:-1])
    ori_y = np.concatenate((ori_x[1:], -(ori_x[np.newaxis, -2])))
    if center == 'peptide_plane':
        centers = (ca[:-1] + ca[1:]) / 2
    else:
        centers = ca.copy()
        ori_x = np.concatenate((ori_x, ori_x[np.newaxis, -1]))
        ori_y = np.concatenate((ori_y, ori_y[np.newaxis, -1]))
    rot_axis_x = geo.norm(np.cross(ori_x, tgt_x))

    tor_x = geo.get_torsion(ori_x, tgt_x, rot_axis_x)
    ori_y_rot = geo.rotation(ori_y, rot_axis_x, tor_x.reshape(-1, 1))
    ori_y_proj = ori_y_rot.copy()
    ori_y_proj[:, 1] = 0.
    ori_y_proj = geo.norm(ori_y_proj)
    l_ori_y_proj = len(ori_y_proj)
    tor_y = geo.get_torsion(ori_y_proj,
                            np.tile(tgt_y, (l_ori_y_proj, 1)),
                            np.tile(rot_axis_y, (l_ori_y_proj, 1)))

    for i, center in enumerate(centers):
        ca_ = ca - center
        global_indexs = np.where(geo.get_len(
            ca_) < (box_size + pad)*np.sqrt(3))[0]

        if relative_index:
            local_indexs = global_indexs - i
            if center == 'peptide_plane':
                local_indexs[local_indexs <= 0] -= 1
        else:
            local_indexs = global_indexs

        num_local_atoms = len(global_indexs)
        ca_xrot = geo.rotation(ca_[global_indexs],
                               np.tile(rot_axis_x[i], (num_local_atoms, 1)),
                               np.tile(tor_x[i], (num_local_atoms, 1)))
        ca_rot = geo.rotation(ca_xrot,
                              np.tile(rot_axis_y, (num_local_atoms, 1)),
                              np.tile(tor_y[i], (num_local_atoms, 1)))

        local_atoms = []
        for j, idx in enumerate(global_indexs):
            if np.max(np.abs(ca_rot[j])) < box_size + pad:
                local_atoms.append(
                    Atom(seq[idx], local_indexs[j], ca_rot[j][0], ca_rot[j][1], ca_rot[j][2]))

        arrays.append(Arraylize(resolution=resolution,
                                size=box_size,
                                atoms=local_atoms,
                                indexs=local_indexs).array)

        if multiview:
            multiview_axis_1 = np.array([0, 0, 1])
            multiview_axis_2 = np.array([1, 0, 0])
            subviews_rot = np.arange(4)/2 * np.pi + np.pi / 4

            for rot in subviews_rot:
                ca_rot_1 = geo.rotation(ca_rot, np.tile(multiview_axis_1, (num_local_atoms, 1)),
                                        np.tile(rot, (num_local_atoms, 1)))
                ca_rot_2 = geo.rotation(ca_rot_1, np.tile(multiview_axis_2, (num_local_atoms, 1)),
                                        np.tile(np.pi / 4, (num_local_atoms, 1)))

                local_atoms = []
                for j, idx in enumerate(global_indexs):
                    if np.max(np.abs(ca_rot_2[j])) < box_size + pad:
                        local_atoms.append(
                            Atom(seq[idx], local_indexs[j], ca_rot_2[j][0], ca_rot_2[j][1], ca_rot_2[j][2]))

                subview_array = (Arraylize(resolution=resolution, size=box_size,
                                           atoms=local_atoms, indexs=local_indexs).array)
                arrays[-1] = np.concatenate((arrays[-1],
                                             subview_array), axis=-1)

    arrays = np.array(arrays, dtype='float32')

    if compress:
        shape = arrays.shape
        keys = arrays.nonzero()
        values = arrays[keys]
        com_ary = [shape, keys, values.astype('float32')]
        return com_ary
    else:
        return arrays
Exemple #11
0
def q_value(state, goal):
    return lambda u: geo.norm(u) + geo.norm(state + u - goal)