from geobipy import Distribution ################################################################################ # Instantiating a frequency domain data point # +++++++++++++++++++++++++++++++++++++++++++ # # To instantiate a frequency domain datapoint we need to define some # characteristics of the acquisition system. # # We need to define the frequencies in Hz of the transmitter, # and the geometery of the loops used for each frequency. frequencies = np.asarray([380.0, 1776.0, 3345.0, 8171.0, 41020.0, 129550.0]) transmitterLoops = [ CircularLoop(orient='z'), CircularLoop(orient='z'), CircularLoop('x', moment=-1), CircularLoop(orient='z'), CircularLoop(orient='z'), CircularLoop(orient='z') ] receiverLoops = [ CircularLoop(orient='z', x=7.93), CircularLoop(orient='z', x=7.91), CircularLoop('x', moment=1, x=9.03), CircularLoop(orient='z', x=7.91), CircularLoop(orient='z', x=7.91), CircularLoop(orient='z', x=7.89) ]
amplitude=np.r_[0.0, 1.0, 1.0, 0.0], current=1.0) hm_waveform = Waveform(time=np.r_[-8.333E-03, -8.033E-03, 0.000E+00, 5.600E-06], amplitude=np.r_[0.0, 1.0, 1.0, 0.0], current=1.0) plt.figure() lm_waveform.plot(label='Low Moment') hm_waveform.plot(label='High Moment', linestyle='-.') plt.legend() ################################################################################ # Define the transmitter and reciever loops transmitter = SquareLoop(sideLength=40.0) receiver = CircularLoop() ################################################################################ # Define two butterworth filters to be applied to the off-time data. filters = [ butterworth(1, 4.5e5, btype='low'), butterworth(1, 3.e5, btype='low') ] ################################################################################ # Create the time domain systems for both moments lm_system = TdemSystem( offTimes=lm_off_time, transmitterLoop=transmitter, receiverLoop=receiver, loopOffset=np.r_[0.0, 0.0, 0.0], # Centre loop sounding
from geobipy import StatArray from geobipy import Distribution ################################################################################ # Instantiating a frequency domain data point # +++++++++++++++++++++++++++++++++++++++++++ # # To instantiate a frequency domain datapoint we need to define some # characteristics of the acquisition system. # # We need to define the frequencies in Hz of the transmitter, # and the geometery of the loops used for each frequency. frequencies = np.asarray([380.0, 1776.0, 3345.0, 8171.0, 41020.0, 129550.0]) transmitterLoops = [CircularLoop(orient='z'), CircularLoop(orient='z'), CircularLoop('x', moment=-1), CircularLoop(orient='z'), CircularLoop(orient='z'), CircularLoop(orient='z')] receiverLoops = [CircularLoop(orient='z', x=7.93), CircularLoop(orient='z', x=7.91), CircularLoop('x', moment=1, x=9.03), CircularLoop(orient='z', x=7.91), CircularLoop(orient='z', x=7.91), CircularLoop(orient='z', x=7.89)] ################################################################################ # Now we can instantiate the system. fds = FdemSystem(frequencies, transmitterLoops, receiverLoops) ################################################################################ # And use the system to instantiate a datapoint # # Note the extra arguments that can be used to create the data point.
# +++++++++++++++++++++++++++++++++++++++++++++ ################################################################################ # We can start by defining the frequencies, transmitter loops, and receiver loops # For each frequency we need to define a pair of loops frequencies = np.asarray([395.0, 822.0, 3263.0, 8199.0, 38760.0, 128755.0]) ################################################################################ # Transmitter positions are defined relative to the observation locations in the data # This is usually a constant offset for all data points. transmitters = [ CircularLoop(orient="z", moment=1.0, x=0.0, y=0.0, z=0.0, pitch=0.0, roll=0.0, yaw=0.0, radius=1.0), CircularLoop(orient="z", moment=1.0, x=0.0, y=0.0, z=0.0, pitch=0.0, roll=0.0, yaw=0.0, radius=1.0), CircularLoop(orient="x", moment=-1.0,