Exemple #1
0
def averageRasters(filelist=None, projection=None, shape=None, lfeedback=True):
    ''' load a list of rasters into an array and average over a shape; return timeseries '''
    # read rasters
    data, geotransform = readRasterArray(file_pattern='{FILENAME}',
                                         lfeedback=lfeedback,
                                         lgeotransform=True,
                                         lskipMissing=False,
                                         lna=False,
                                         axes=('FILENAME', ),
                                         FILENAME=filelist)
    if lfeedback: print((data.shape, geotransform))
    # create GridDef to rasterize shape
    griddef = GridDefinition(name='raster',
                             projection=projection,
                             geotransform=geotransform,
                             size=(data.shape[-1], data.shape[-2]),
                             convention='proj4')
    if lfeedback: print(griddef)
    # create mask
    mask = shape.rasterize(griddef=griddef, invert=False)
    assert mask.shape == data.shape[1:], griddef
    mask = mask.reshape((1, ) + mask.shape).repeat(data.shape[0], axis=0)
    assert mask.shape == data.shape, mask
    #print(mask)
    # extract and average data
    #print(mask[1,:].sum(),)
    data.mask = mask
    #print(data[1,:])
    #print(data[1,:].sum(),data[1,:].mean())
    ts_data = data.mean(axis=-1).mean(axis=-1)
    assert len(filelist) == data.shape[0], data.shape
    # return timeseries of shape averages
    return ts_data
Exemple #2
0
# NARR projection
projdict = dict(proj  = 'lcc', # Lambert Conformal Conic  
                lat_1 =   50., # Latitude of first standard parallel
                lat_2 =   50., # Latitude of second standard parallel
                lat_0 =   50., # Latitude of natural origin
                lon_0 = -107.) # Longitude of natural origin
                # 
                # x_0   = 5632642.22547, # False Origin Easting
                # y_0   = 4612545.65137) # False Origin Northing
# NARR grid definition           
projection = getProjFromDict(projdict)
geotransform = (-5648873.5, 32463.0, 0.0, -4628776.5, 0.0, 32463.0)
size = (349, 277) # (x,y) map size of NARR grid
# make GridDefinition instance
NARR_grid = GridDefinition(name=dataset_name, projection=projdict, geotransform=geotransform, size=size)

# variable attributes and name
varatts = dict(air   = dict(name='T2', units='K'), # 2m Temperature
               prate = dict(name='precip', units='kg/m^2/s'), # total precipitation rate (kg/m^2/s)
               # LTM-only variables (currently...)
               prmsl = dict(name='pmsl', units='Pa'), # sea-level pressure
               pevap = dict(name='pet', units='kg/m^2'), # monthly accumulated PET (kg/m^2)
               pr_wtr = dict(name='pwtr', units='kg/m^2'), # total precipitable water (kg/m^2)
               # axes (don't have their own file; listed in axes)
               lon   = dict(name='lon2D', units='deg E'), # geographic longitude field
               lat   = dict(name='lat2D', units='deg N'), # geographic latitude field
               time  = dict(name='time', units='days', offset=-1569072, scalefactor=1./24.), # time coordinate
               # N.B.: the time coordinate is only used for the monthly time-series data, not the LTM
               #       the time offset is chose such that 1979 begins with the origin (time=0)
               x     = dict(name='x', units='m', offset=-5632642), # projected west-east coordinate
Exemple #3
0
# PRISM grid definition
dlat = dlon = 1. / 120.  #  0.0083333333
dlat2 = dlon2 = 1. / 240.  # half step
nlat = 1680  # slat = 14 deg
nlon = 3241  # slon = 27 deg
# N.B.: coordinates refer to grid points (CF convention), commented values refer to box edges (GDAL convention)
llclat = 48.  # 48.0000000000553
# llclat = 48.0000000000553 # 48.
llclon = -140.  # -140.0

geotransform = (llclon - dlon2, dlon, 0.0, llclat - dlat2, 0.0, dlat)
size = (nlon, nlat)  # (x,y) map size of PRISM grid
# make GridDefinition instance
PCIC_grid = GridDefinition(name=dataset_name,
                           projection=None,
                           geotransform=geotransform,
                           size=size)

## Functions that handle access to the original PCIC NetCDF files

# variable attributes and names in original PCIC files
ltmvaratts = dict(
    tmin=dict(name='Tmin',
              units='K',
              atts=dict(long_name='Minimum 2m Temperature'),
              offset=273.15),  # 2m minimum temperature
    tmax=dict(name='Tmax',
              units='K',
              atts=dict(long_name='Maximum 2m Temperature'),
              offset=273.15),  # 2m maximum temperature
    pr=dict(name='precip',
Exemple #4
0
dataset_name = 'CFSR'

# CFSR grid definition
# geotransform_031 = (-180.15625, 0.3125, 0.0, 89.915802001953125, 0.0, -0.30960083)
geotransform_031 = (-0.15625, 0.3125, 0.0, 89.915802001953125, 0.0,
                    -0.30960083)
size_031 = (1152, 576)  # (x,y) map size
geotransform_05 = (-180.0, 0.5, 0.0, -90.0, 0.0, 0.5)
geotransform_05 = (-0.25, 0.5, 0.0, 90.25, 0.0, -0.5
                   )  # this grid actually has a grid point at the poles!
size_05 = (720, 361)  # (x,y) map size

# make GridDefinition instance
CFSR_031_grid = GridDefinition(name='CFSR_031',
                               projection=None,
                               geotransform=geotransform_031,
                               size=size_031,
                               lwrap360=True)
CFSR_05_grid = GridDefinition(name='CFSR_05',
                              projection=None,
                              geotransform=geotransform_05,
                              size=size_05,
                              lwrap360=True)
CFSR_grid = CFSR_031_grid  # default

# variable attributes and name
varatts = dict(
    TMP_L103_Avg=dict(name='T2', units='K'),  # 2m average temperature
    TMP_L1=dict(name='Ts', units='K'),  # average skin temperature
    PRATE_L1=dict(name='precip', units='kg/m^2/s'),  # total precipitation
    PRES_L1=dict(name='ps', units='Pa'),  # surface pressure
Exemple #5
0
dataset_name = 'GPCC'

# GPCC grid definition
geotransform_025 = (-180.0, 0.25, 0.0, -90.0, 0.0, 0.25)
size_025 = (1440, 720)  # (x,y) map size
geotransform_05 = (-180.0, 0.5, 0.0, -90.0, 0.0, 0.5)
size_05 = (720, 360)  # (x,y) map size
geotransform_10 = (-180.0, 1.0, 0.0, -90.0, 0.0, 1.0)
size_10 = (360, 180)  # (x,y) map size
geotransform_25 = (-180.0, 2.5, 0.0, -90.0, 0.0, 2.5)
size_25 = (144, 72)  # (x,y) map size

# make GridDefinition instance
GPCC_025_grid = GridDefinition(name='GPCC_025',
                               projection=None,
                               geotransform=geotransform_025,
                               size=size_025)
GPCC_05_grid = GridDefinition(name='GPCC_05',
                              projection=None,
                              geotransform=geotransform_05,
                              size=size_05)
GPCC_10_grid = GridDefinition(name='GPCC_10',
                              projection=None,
                              geotransform=geotransform_10,
                              size=size_10)
GPCC_25_grid = GridDefinition(name='GPCC_25',
                              projection=None,
                              geotransform=geotransform_25,
                              size=size_25)

# variable attributes and name