Exemple #1
0
def find_kalman_controls(control,
                         heading,
                         omega=None,
                         winds=None,
                         plane_specs=None,
                         time_step=1):
    control_x, control_z = 0, 0
    if winds:
        headings = []
        plane_cs, plane_mass, plane_half_length = plane_specs
        for wind in winds:
            wind_speed, wind_heading = wind
            wind_force = wind_speed * plane_cs
            wind_torque = plane_half_length * wind_force * np.sin(
                np.radians(wind_heading - heading))
            wind_w = 0.1 * time_step * (wind_torque /
                                        plane_mass) * plane_half_length
            headings.append(heading + (omega + wind_w) * time_step)

            wind_acc = wind_speed * plane_cs / plane_mass

            control_x += wind_acc * np.cos(
                np.radians(solver_heading(wind_heading)))
            control_z += wind_acc * np.sin(
                np.radians(solver_heading(wind_heading)))

        control_x /= len(winds)
        control_z /= len(winds)
        heading = sum(headings) / len(headings)
    control_x += control * np.cos(np.radians(solver_heading(heading)))
    control_z += control * np.sin(np.radians(solver_heading(heading)))
    return control_x, control_z
def solve_states2(initial_states,
                  desired_states,
                  center_line,
                  extern_conditions,
                  plane_specs,
                  constraints,
                  time_step=1,
                  sim_time=10):

    acceleration_constraint, turning_constraint = constraints

    rejection, init_velocity, init_heading = initial_states
    desired_heading, desired_velocity = desired_states

    init_heading = solver_heading(init_heading)

    init_guess = formulate_guess(sim_time)
    bounds = [(-acceleration_constraint, acceleration_constraint),
              (-turning_constraint, turning_constraint)] * sim_time

    rinit_x, rinit_y = rotate(0, rejection,
                              solver_heading(desired_heading) - 360)
    state0 = [rinit_x, rinit_y, init_velocity, init_heading]

    obj = formulate_objective(
        state0,
        center_line, [solver_heading(desired_heading), desired_velocity],
        extern_conditions,
        plane_specs,
        time_step=time_step)

    start_time = time.time()
    result = opt.minimize(obj,
                          init_guess,
                          method='SLSQP',
                          bounds=bounds,
                          options={
                              'eps': 0.2,
                              'maxiter': 300
                          })
    # print('-----------------------------------------')
    # print('----', time.time() - start_time, 'seconds ----')
    # print('-----------------------------------------\n')

    states = compute_states(state0,
                            result.x,
                            extern_conditions[0],
                            plane_specs,
                            time_step=time_step)
    states = get_states_controls(states)
    return get_kalman_controls(states, time_step), result.fun
def compute_states(init_state,
                   controls,
                   wind_dynamics,
                   plane_specs,
                   time_step=1):

    wind_speed, wind_heading = wind_dynamics
    wind_heading = solver_heading(wind_heading)
    plane_cs, plane_mass, plane_half_length = plane_specs
    wind_force = wind_speed * plane_cs
    wind_acc = wind_force / plane_mass

    states = []
    x, y, v, h = init_state

    for i in range(0, len(controls), 2):

        a, w = controls[i:i + 2]
        states = np.concatenate((states, [x, y, v, h, a, w]))

        vx = (v * np.cos(np.radians(h))) + (time_step * wind_acc *
                                            np.cos(np.radians(wind_heading)))
        vy = (v * np.sin(np.radians(h))) + (time_step * wind_acc *
                                            np.sin(np.radians(wind_heading)))

        x += time_step * vx
        y += time_step * vy

        # rF * sin(theta)
        wind_torque = plane_half_length * wind_force * np.sin(
            np.radians(wind_heading - h))
        wind_w = 0.1 * time_step * (wind_torque /
                                    plane_mass) * plane_half_length
        v += time_step * a
        h += time_step * (w + wind_w)

        h %= 360

    return states
def sample_environments(real_ws, real_wh):
    env = [(real_ws, solver_heading(real_wh))]
    for _ in range(num_samples):
        env.append((np.random.randint(real_ws - ws_bins[2], real_ws + ws_bins[2] + 1),
                    solver_heading(np.random.randint(real_wh - wh_bins[2], real_wh + wh_bins[2] + 1))))
    return env