Exemple #1
0
    def setUp(self):
        gs.random.seed(0)
        n = 3
        self.base = SPDMatrices(n)
        self.base_metric = SPDMetricBuresWasserstein(n)
        self.group = SpecialOrthogonal(n)
        self.bundle = FiberBundle(GeneralLinear(n),
                                  base=self.base,
                                  group=self.group)
        self.quotient_metric = QuotientMetric(self.bundle,
                                              ambient_metric=MatricesMetric(
                                                  n, n))

        def submersion(point):
            return GeneralLinear.mul(point, GeneralLinear.transpose(point))

        def tangent_submersion(tangent_vec, base_point):
            product = GeneralLinear.mul(base_point,
                                        GeneralLinear.transpose(tangent_vec))
            return 2 * GeneralLinear.to_symmetric(product)

        def horizontal_lift(tangent_vec, point, base_point=None):
            if base_point is None:
                base_point = submersion(point)
            sylvester = gs.linalg.solve_sylvester(base_point, base_point,
                                                  tangent_vec)
            return GeneralLinear.mul(sylvester, point)

        self.bundle.submersion = submersion
        self.bundle.tangent_submersion = tangent_submersion
        self.bundle.horizontal_lift = horizontal_lift
        self.bundle.lift = gs.linalg.cholesky
Exemple #2
0
 def setup_method(self):
     gs.random.seed(0)
     n = 3
     self.bundle = BuresWassersteinBundle(n)
     self.base = self.bundle.base
     self.base_metric = SPDMetricBuresWasserstein(n)
     self.quotient_metric = QuotientMetric(self.bundle)
 def test_inner_product(self, n, tangent_vec_a, tangent_vec_b, base_point,
                        expected):
     metric = SPDMetricBuresWasserstein(n)
     result = metric.inner_product(gs.array(tangent_vec_a),
                                   gs.array(tangent_vec_b),
                                   gs.array(base_point))
     self.assertAllClose(result, gs.array(expected))
    def test_bureswasserstein_inner_product(self):
        """Test of SPDMetricBuresWasserstein.inner_product method."""
        base_point = gs.array([[1., 0., 0.], [0., 1.5, .5], [0., .5, 1.5]])
        tangent_vec_a = gs.array([[2., 1., 1.], [1., .5, .5], [1., .5, .5]])
        tangent_vec_b = gs.array([[1., 2., 4.], [2., 3., 8.], [4., 8., 5.]])
        metric = SPDMetricBuresWasserstein(3)
        result = metric.inner_product(tangent_vec_a, tangent_vec_b, base_point)
        expected = gs.array(4.)

        self.assertAllClose(result, expected)
    def setUp(self):
        """Set up the test."""
        warnings.simplefilter('ignore', category=ImportWarning)

        gs.random.seed(1234)

        self.n = 3
        self.space = SPDMatrices(n=self.n)
        self.metric_affine = SPDMetricAffine(n=self.n)
        self.metric_bureswasserstein = SPDMetricBuresWasserstein(n=self.n)
        self.metric_euclidean = SPDMetricEuclidean(n=self.n)
        self.metric_logeuclidean = SPDMetricLogEuclidean(n=self.n)
        self.n_samples = 4
Exemple #6
0
class TestQuotientMetric(geomstats.tests.TestCase):
    def setup_method(self):
        gs.random.seed(0)
        n = 3
        self.bundle = BuresWassersteinBundle(n)
        self.base = self.bundle.base
        self.base_metric = SPDMetricBuresWasserstein(n)
        self.quotient_metric = QuotientMetric(self.bundle)

    def test_belongs(self):
        point = self.base.random_point()
        result = self.bundle.belongs(point)
        self.assertTrue(result)

    def test_riemannian_submersion(self):
        mat = self.bundle.random_point()
        point = self.bundle.riemannian_submersion(mat)
        result = self.bundle.belongs(point)
        self.assertTrue(result)

    def test_lift_and_riemannian_submersion(self):
        point = self.base.random_point()
        mat = self.bundle.lift(point)
        result = self.bundle.riemannian_submersion(mat)
        self.assertAllClose(result, point)

    def test_tangent_riemannian_submersion(self):
        mat = self.bundle.random_point()
        point = self.bundle.riemannian_submersion(mat)
        vec = self.bundle.random_point()
        tangent_vec = self.bundle.tangent_riemannian_submersion(vec, point)
        result = self.base.is_tangent(tangent_vec, point)
        self.assertTrue(result)

    def test_horizontal_projection(self):
        mat = self.bundle.random_point()
        vec = self.bundle.random_point()
        horizontal_vec = self.bundle.horizontal_projection(vec, mat)
        product = Matrices.mul(horizontal_vec, GeneralLinear.inverse(mat))
        is_horizontal = Matrices.is_symmetric(product)
        self.assertTrue(is_horizontal)

    def test_vertical_projection(self):
        mat = self.bundle.random_point()
        vec = self.bundle.random_point()
        vertical_vec = self.bundle.vertical_projection(vec, mat)

        result = self.bundle.tangent_riemannian_submersion(vertical_vec, mat)
        expected = gs.zeros_like(result)
        self.assertAllClose(result, expected, atol=1e-5)

    def test_horizontal_lift_and_tangent_riemannian_submersion(self):
        mat = self.bundle.random_point()
        tangent_vec = Matrices.to_symmetric(self.bundle.random_point())
        horizontal = self.bundle.horizontal_lift(tangent_vec, fiber_point=mat)
        result = self.bundle.tangent_riemannian_submersion(horizontal, mat)
        self.assertAllClose(result, tangent_vec)

    def test_is_horizontal(self):
        mat = self.bundle.random_point()
        tangent_vec = Matrices.to_symmetric(self.bundle.random_point())
        horizontal = self.bundle.horizontal_lift(tangent_vec, fiber_point=mat)
        result = self.bundle.is_horizontal(horizontal, mat)
        self.assertTrue(result)

    def test_is_vertical(self):
        mat = self.bundle.random_point()
        tangent_vec = self.bundle.random_point()
        vertical = self.bundle.vertical_projection(tangent_vec, mat)
        result = self.bundle.is_vertical(vertical, mat)
        self.assertTrue(result)

    @geomstats.tests.autograd_tf_and_torch_only
    def test_align(self):
        point = self.bundle.random_point(2)
        aligned = self.bundle.align(point[0], point[1], tol=1e-10)
        result = self.bundle.is_horizontal(point[1] - aligned,
                                           point[1],
                                           atol=1e-4)
        self.assertTrue(result)

    def test_inner_product(self):
        mat = self.bundle.random_point()
        point = self.bundle.riemannian_submersion(mat)
        tangent_vecs = Matrices.to_symmetric(self.bundle.random_point(2)) / 10
        result = self.quotient_metric.inner_product(tangent_vecs[0],
                                                    tangent_vecs[1],
                                                    fiber_point=mat)
        expected = self.base_metric.inner_product(tangent_vecs[0],
                                                  tangent_vecs[1], point)
        self.assertAllClose(result, expected)

    def test_exp(self):
        mat = self.bundle.random_point()
        point = self.bundle.riemannian_submersion(mat)
        tangent_vec = Matrices.to_symmetric(self.bundle.random_point()) / 5

        result = self.quotient_metric.exp(tangent_vec, point)
        expected = self.base_metric.exp(tangent_vec, point)
        self.assertAllClose(result, expected)

    @geomstats.tests.autograd_tf_and_torch_only
    def test_log(self):
        mats = self.bundle.random_point(2)
        points = self.bundle.riemannian_submersion(mats)

        result = self.quotient_metric.log(points[1], points[0])
        expected = self.base_metric.log(points[1], points[0])
        self.assertAllClose(result, expected, atol=3e-4)

    @geomstats.tests.autograd_tf_and_torch_only
    def test_squared_dist(self):
        mats = self.bundle.random_point(2)
        points = self.bundle.riemannian_submersion(mats)

        result = self.quotient_metric.squared_dist(points[1],
                                                   points[0],
                                                   tol=1e-10)
        expected = self.base_metric.squared_dist(points[1], points[0])
        self.assertAllClose(result, expected)

    def test_integrability_tensor(self):
        mat = self.bundle.random_point()
        point = self.bundle.riemannian_submersion(mat)
        tangent_vec = Matrices.to_symmetric(self.bundle.random_point()) / 5

        with pytest.raises(NotImplementedError):
            self.bundle.integrability_tensor(tangent_vec, tangent_vec, point)
 def test_log(self, n, point, base_point, expected):
     metric = SPDMetricBuresWasserstein(n)
     result = metric.log(gs.array(point), gs.array(base_point))
     self.assertAllClose(result, expected)
 def test_exp(self, n, tangent_vec, base_point, expected):
     metric = SPDMetricBuresWasserstein(n)
     result = metric.exp(gs.array(tangent_vec), gs.array(base_point))
     self.assertAllClose(result, gs.array(expected))
Exemple #9
0
class TestQuotientMetric(geomstats.tests.TestCase):
    def setUp(self):
        gs.random.seed(0)
        n = 3
        self.base = SPDMatrices(n)
        self.base_metric = SPDMetricBuresWasserstein(n)
        self.group = SpecialOrthogonal(n)
        self.bundle = FiberBundle(GeneralLinear(n),
                                  base=self.base,
                                  group=self.group)
        self.quotient_metric = QuotientMetric(self.bundle,
                                              ambient_metric=MatricesMetric(
                                                  n, n))

        def submersion(point):
            return GeneralLinear.mul(point, GeneralLinear.transpose(point))

        def tangent_submersion(tangent_vec, base_point):
            product = GeneralLinear.mul(base_point,
                                        GeneralLinear.transpose(tangent_vec))
            return 2 * GeneralLinear.to_symmetric(product)

        def horizontal_lift(tangent_vec, point, base_point=None):
            if base_point is None:
                base_point = submersion(point)
            sylvester = gs.linalg.solve_sylvester(base_point, base_point,
                                                  tangent_vec)
            return GeneralLinear.mul(sylvester, point)

        self.bundle.submersion = submersion
        self.bundle.tangent_submersion = tangent_submersion
        self.bundle.horizontal_lift = horizontal_lift
        self.bundle.lift = gs.linalg.cholesky

    def test_belongs(self):
        point = self.base.random_uniform()
        result = self.bundle.belongs(point)
        self.assertTrue(result)

    def test_submersion(self):
        mat = self.bundle.total_space.random_uniform()
        point = self.bundle.submersion(mat)
        result = self.bundle.belongs(point)
        self.assertTrue(result)

    def test_lift_and_submersion(self):
        point = self.base.random_uniform()
        mat = self.bundle.lift(point)
        result = self.bundle.submersion(mat)
        self.assertAllClose(result, point)

    def test_tangent_submersion(self):
        mat = self.bundle.total_space.random_uniform()
        point = self.bundle.submersion(mat)
        vec = self.bundle.total_space.random_uniform()
        tangent_vec = self.bundle.tangent_submersion(vec, point)
        result = self.base.is_tangent(tangent_vec, point)
        self.assertTrue(result)

    def test_horizontal_projection(self):
        mat = self.bundle.total_space.random_uniform()
        vec = self.bundle.total_space.random_uniform()
        horizontal_vec = self.bundle.horizontal_projection(vec, mat)
        product = GeneralLinear.mul(horizontal_vec, GeneralLinear.inverse(mat))
        is_horizontal = GeneralLinear.is_symmetric(product)
        self.assertTrue(is_horizontal)

    def test_vertical_projection(self):
        mat = self.bundle.total_space.random_uniform()
        vec = self.bundle.total_space.random_uniform()
        vertical_vec = self.bundle.vertical_projection(vec, mat)

        result = self.bundle.tangent_submersion(vertical_vec, mat)
        expected = gs.zeros_like(result)
        self.assertAllClose(result, expected, atol=1e-5)

    def test_horizontal_lift_and_tangent_submersion(self):
        mat = self.bundle.total_space.random_uniform()
        tangent_vec = GeneralLinear.to_symmetric(
            self.bundle.total_space.random_uniform())
        horizontal = self.bundle.horizontal_lift(tangent_vec, mat)
        result = self.bundle.tangent_submersion(horizontal, mat)
        self.assertAllClose(result, tangent_vec)

    def test_is_horizontal(self):
        mat = self.bundle.total_space.random_uniform()
        tangent_vec = GeneralLinear.to_symmetric(
            self.bundle.total_space.random_uniform())
        horizontal = self.bundle.horizontal_lift(tangent_vec, mat)
        result = self.bundle.is_horizontal(horizontal, mat)
        self.assertTrue(result)

    def test_is_vertical(self):
        mat = self.bundle.total_space.random_uniform()
        tangent_vec = self.bundle.total_space.random_uniform()
        vertical = self.bundle.vertical_projection(tangent_vec, mat)
        result = self.bundle.is_vertical(vertical, mat)
        self.assertTrue(result)

    def test_align(self):
        point = self.bundle.total_space.random_uniform(2)
        aligned = self.bundle.align(point[0], point[1], tol=1e-10)
        result = self.bundle.is_horizontal(point[1] - aligned,
                                           point[1],
                                           atol=1e-5)
        self.assertTrue(result)

    def test_inner_product(self):
        mat = self.bundle.total_space.random_uniform()
        point = self.bundle.submersion(mat)
        tangent_vecs = GeneralLinear.to_symmetric(
            self.bundle.total_space.random_uniform(2)) / 10
        result = self.quotient_metric.inner_product(tangent_vecs[0],
                                                    tangent_vecs[1],
                                                    point=mat)
        expected = self.base_metric.inner_product(tangent_vecs[0],
                                                  tangent_vecs[1], point)
        self.assertAllClose(result, expected)

    def test_exp(self):
        mat = self.bundle.total_space.random_uniform()
        point = self.bundle.submersion(mat)
        tangent_vec = GeneralLinear.to_symmetric(
            self.bundle.total_space.random_uniform()) / 5

        result = self.quotient_metric.exp(tangent_vec, point)
        expected = self.base_metric.exp(tangent_vec, point)
        self.assertAllClose(result, expected)

    def test_log(self):
        mats = self.bundle.total_space.random_uniform(2)
        points = self.bundle.submersion(mats)

        result = self.quotient_metric.log(points[1], points[0], tol=1e-10)
        expected = self.base_metric.log(points[1], points[0])
        self.assertAllClose(result, expected, atol=3e-4)

    def test_squared_dist(self):
        mats = self.bundle.total_space.random_uniform(2)
        points = self.bundle.submersion(mats)

        result = self.quotient_metric.squared_dist(points[1],
                                                   points[0],
                                                   tol=1e-10)
        expected = self.base_metric.squared_dist(points[1], points[0])
        self.assertAllClose(result, expected, atol=1e-5)