Exemple #1
0
class TestTangentPCA(geomstats.tests.TestCase):
    _multiprocess_can_split_ = True

    def setUp(self):
        self.so3 = SpecialOrthogonalGroup(n=3)
        self.n_samples = 10

        self.X = self.so3.random_uniform(n_samples=self.n_samples)
        self.metric = self.so3.bi_invariant_metric
        self.n_components = 2

    @geomstats.tests.np_only
    def test_tangent_pca_error(self):
        X = self.X
        trans = TangentPCA(self.metric, n_components=self.n_components)
        trans.fit(X)
        X_diff_size = gs.ones((self.n_samples, gs.shape(X)[1] + 1))
        self.assertRaises(ValueError, trans.transform, X_diff_size)

    @geomstats.tests.np_only
    def test_tangent_pca(self):
        X = self.X
        trans = TangentPCA(self.metric, n_components=gs.shape(X)[1])

        trans.fit(X)
        self.assertEquals(trans.n_features_, gs.shape(X)[1])
Exemple #2
0
class TestVisualizationMethods(geomstats.tests.TestCase):
    def setUp(self):
        self.n_samples = 10
        self.SO3_GROUP = SpecialOrthogonalGroup(n=3)
        self.SE3_GROUP = SpecialEuclideanGroup(n=3)
        self.S1 = Hypersphere(dimension=1)
        self.S2 = Hypersphere(dimension=2)
        self.H2 = HyperbolicSpace(dimension=2)

        plt.figure()

    @geomstats.tests.np_only
    def test_plot_points_so3(self):
        points = self.SO3_GROUP.random_uniform(self.n_samples)
        visualization.plot(points, space='SO3_GROUP')

    @geomstats.tests.np_only
    def test_plot_points_se3(self):
        points = self.SE3_GROUP.random_uniform(self.n_samples)
        visualization.plot(points, space='SE3_GROUP')

    @geomstats.tests.np_only
    def test_plot_points_s1(self):
        points = self.S1.random_uniform(self.n_samples)
        visualization.plot(points, space='S1')

    @geomstats.tests.np_only
    def test_plot_points_s2(self):
        points = self.S2.random_uniform(self.n_samples)
        visualization.plot(points, space='S2')

    @geomstats.tests.np_only
    def test_plot_points_h2_poincare_disk(self):
        points = self.H2.random_uniform(self.n_samples)
        visualization.plot(points, space='H2_poincare_disk')

    @geomstats.tests.np_only
    def test_plot_points_h2_poincare_half_plane(self):
        points = self.H2.random_uniform(self.n_samples)
        visualization.plot(points, space='H2_poincare_half_plane')

    @geomstats.tests.np_only
    def test_plot_points_h2_klein_disk(self):
        points = self.H2.random_uniform(self.n_samples)
        visualization.plot(points, space='H2_klein_disk')
Exemple #3
0
class TestBackendNumpy(unittest.TestCase):
    _multiprocess_can_split_ = True

    @classmethod
    def setUpClass(cls):
        cls.initial_backend = os.environ['GEOMSTATS_BACKEND']
        os.environ['GEOMSTATS_BACKEND'] = 'numpy'
        importlib.reload(gs)

    @classmethod
    def tearDownClass(cls):
        os.environ['GEOMSTATS_BACKEND'] = cls.initial_backend
        importlib.reload(gs)

    def setUp(self):
        warnings.simplefilter('ignore', category=ImportWarning)

        self.so3_group = SpecialOrthogonalGroup(n=3)
        self.n_samples = 2

    def test_logm(self):
        point = gs.array([[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]])
        result = gs.linalg.logm(point)
        expected = gs.array([[0.693147180, 0., 0.], [0., 1.098612288, 0.],
                             [0., 0., 1.38629436]])

        self.assertTrue(gs.allclose(result, expected))

    def test_expm_and_logm(self):
        point = gs.array([[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]])
        result = gs.linalg.expm(gs.linalg.logm(point))
        expected = point

        self.assertTrue(gs.allclose(result, expected))

    def test_expm_vectorization(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])

        expected = gs.array([[[7.38905609, 0., 0.], [0., 20.0855369, 0.],
                              [0., 0., 54.5981500]],
                             [[2.718281828, 0., 0.], [0., 148.413159, 0.],
                              [0., 0., 403.42879349]]])

        result = gs.linalg.expm(point)

        self.assertTrue(gs.allclose(result, expected))

    def test_logm_vectorization_diagonal(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])

        expected = gs.array([[[0.693147180, 0., 0.], [0., 1.09861228866, 0.],
                              [0., 0., 1.38629436]],
                             [[0., 0., 0.], [0., 1.609437912, 0.],
                              [0., 0., 1.79175946]]])

        result = gs.linalg.logm(point)

        self.assertTrue(gs.allclose(result, expected))

    def test_expm_and_logm_vectorization_random_rotation(self):
        point = self.so3_group.random_uniform(self.n_samples)
        point = self.so3_group.matrix_from_rotation_vector(point)

        result = gs.linalg.expm(gs.linalg.logm(point))
        expected = point

        self.assertTrue(gs.allclose(result, expected))

    def test_expm_and_logm_vectorization(self):
        point = gs.array([[[2., 0., 0.], [0., 3., 0.], [0., 0., 4.]],
                          [[1., 0., 0.], [0., 5., 0.], [0., 0., 6.]]])
        result = gs.linalg.expm(gs.linalg.logm(point))
        expected = point

        self.assertTrue(gs.allclose(result, expected))
Exemple #4
0
class SpecialEuclideanGroup(LieGroup):
    """
    Class for the special euclidean group SE(n),
    i.e. the Lie group of rigid transformations.
    """
    def __init__(self, n, point_type=None, epsilon=0.):
        assert isinstance(n, int) and n > 1

        self.n = n
        self.dimension = int((n * (n - 1)) / 2 + n)

        self.epsilon = epsilon

        self.default_point_type = point_type
        if point_type is None:
            self.default_point_type = 'vector' if n == 3 else 'matrix'

        super(SpecialEuclideanGroup, self).__init__(dimension=self.dimension)

        self.rotations = SpecialOrthogonalGroup(n=n, epsilon=epsilon)
        self.translations = EuclideanSpace(dimension=n)

    def get_identity(self, point_type=None):
        """
        Get the identity of the group,
        as a vector if point_type == 'vector',
        as a matrix if point_type == 'matrix'.
        """
        if point_type is None:
            point_type = self.default_point_type

        identity = gs.zeros(self.dimension)
        if self.default_point_type == 'matrix':
            identity = gs.eye(self.n)
        return identity

    identity = property(get_identity)

    def belongs(self, point, point_type=None):
        """
        Evaluate if a point belongs to SE(n).
        """
        if point_type is None:
            point_type = self.default_point_type

        if point_type == 'vector':
            point = gs.to_ndarray(point, to_ndim=2)
            n_points, point_dim = point.shape
            belongs = point_dim == self.dimension
            belongs = gs.to_ndarray(belongs, to_ndim=1)
            belongs = gs.to_ndarray(belongs, to_ndim=2, axis=1)
            belongs = gs.tile(belongs, (n_points, 1))
        elif point_type == 'matrix':
            point = gs.to_ndarray(point, to_ndim=3)
            raise NotImplementedError()

        return belongs

    def regularize(self, point, point_type=None):
        """
        Regularize a point to the canonical representation
        chosen for SE(n).
        """
        if point_type is None:
            point_type = self.default_point_type

        if point_type == 'vector':
            point = gs.to_ndarray(point, to_ndim=2)

            rotations = self.rotations
            dim_rotations = rotations.dimension

            rot_vec = point[:, :dim_rotations]
            regularized_rot_vec = rotations.regularize(rot_vec,
                                                       point_type=point_type)

            translation = point[:, dim_rotations:]

            regularized_point = gs.concatenate(
                [regularized_rot_vec, translation], axis=1)

        elif point_type == 'matrix':
            point = gs.to_ndarray(point, to_ndim=3)
            regularized_point = gs.copy(point)

        return regularized_point

    def regularize_tangent_vec_at_identity(self,
                                           tangent_vec,
                                           metric=None,
                                           point_type=None):
        if point_type is None:
            point_type = self.default_point_type

        return self.regularize_tangent_vec(tangent_vec,
                                           self.identity,
                                           metric,
                                           point_type=point_type)

    def regularize_tangent_vec(self,
                               tangent_vec,
                               base_point,
                               metric=None,
                               point_type=None):
        if point_type is None:
            point_type = self.default_point_type

        if metric is None:
            metric = self.left_canonical_metric

        if point_type == 'vector':
            tangent_vec = gs.to_ndarray(tangent_vec, to_ndim=2)
            base_point = gs.to_ndarray(base_point, to_ndim=2)

            rotations = self.rotations
            dim_rotations = rotations.dimension

            rot_tangent_vec = tangent_vec[:, :dim_rotations]
            rot_base_point = base_point[:, :dim_rotations]

            metric_mat = metric.inner_product_mat_at_identity
            rot_metric_mat = metric_mat[:, :dim_rotations, :dim_rotations]
            rot_metric = InvariantMetric(
                group=rotations,
                inner_product_mat_at_identity=rot_metric_mat,
                left_or_right=metric.left_or_right)

            regularized_vec = gs.zeros_like(tangent_vec)
            rotations_vec = rotations.regularize_tangent_vec(
                tangent_vec=rot_tangent_vec,
                base_point=rot_base_point,
                metric=rot_metric,
                point_type=point_type)

            regularized_vec = gs.concatenate(
                [rotations_vec, tangent_vec[:, dim_rotations:]], axis=1)

        elif point_type == 'matrix':
            regularized_vec = tangent_vec

        return regularized_vec

    def compose(self, point_1, point_2, point_type=None):
        """
        Compose two elements of SE(n).

        Formula:
        point_1 . point_2 = [R1 * R2, (R1 * t2) + t1]
        where:
        R1, R2 are rotation matrices,
        t1, t2 are translation vectors.
        """
        if point_type is None:
            point_type = self.default_point_type

        rotations = self.rotations
        dim_rotations = rotations.dimension

        point_1 = self.regularize(point_1, point_type=point_type)
        point_2 = self.regularize(point_2, point_type=point_type)

        if point_type == 'vector':
            n_points_1, _ = point_1.shape
            n_points_2, _ = point_2.shape

            assert (point_1.shape == point_2.shape or n_points_1 == 1
                    or n_points_2 == 1)

            if n_points_1 == 1:
                point_1 = gs.stack([point_1[0]] * n_points_2)

            if n_points_2 == 1:
                point_2 = gs.stack([point_2[0]] * n_points_1)

            rot_vec_1 = point_1[:, :dim_rotations]
            rot_mat_1 = rotations.matrix_from_rotation_vector(rot_vec_1)

            rot_vec_2 = point_2[:, :dim_rotations]
            rot_mat_2 = rotations.matrix_from_rotation_vector(rot_vec_2)

            translation_1 = point_1[:, dim_rotations:]
            translation_2 = point_2[:, dim_rotations:]

            composition_rot_mat = gs.matmul(rot_mat_1, rot_mat_2)
            composition_rot_vec = rotations.rotation_vector_from_matrix(
                composition_rot_mat)

            composition_translation = gs.einsum('ij,ikj->ik', translation_2,
                                                rot_mat_1) + translation_1

            composition = gs.concatenate(
                (composition_rot_vec, composition_translation), axis=1)

        elif point_type == 'matrix':
            raise NotImplementedError()

        composition = self.regularize(composition, point_type=point_type)
        return composition

    def inverse(self, point, point_type=None):
        """
        Compute the group inverse in SE(n).

        Formula:
        (R, t)^{-1} = (R^{-1}, R^{-1}.(-t))
        """
        if point_type is None:
            point_type = self.default_point_type

        rotations = self.rotations
        dim_rotations = rotations.dimension

        point = self.regularize(point)

        if point_type == 'vector':
            n_points, _ = point.shape

            rot_vec = point[:, :dim_rotations]
            translation = point[:, dim_rotations:]

            inverse_point = gs.zeros_like(point)
            inverse_rotation = -rot_vec

            inv_rot_mat = rotations.matrix_from_rotation_vector(
                inverse_rotation)

            inverse_translation = gs.einsum(
                'ni,nij->nj', -translation,
                gs.transpose(inv_rot_mat, axes=(0, 2, 1)))

            inverse_point = gs.concatenate(
                [inverse_rotation, inverse_translation], axis=1)

        elif point_type == 'matrix':
            raise NotImplementedError()

        inverse_point = self.regularize(inverse_point, point_type=point_type)
        return inverse_point

    def jacobian_translation(self,
                             point,
                             left_or_right='left',
                             point_type=None):
        """
        Compute the jacobian matrix of the differential
        of the left/right translations from the identity to point in SE(n).
        """
        if point_type is None:
            point_type = self.default_point_type

        assert left_or_right in ('left', 'right')

        dim = self.dimension
        rotations = self.rotations
        translations = self.translations
        dim_rotations = rotations.dimension
        dim_translations = translations.dimension

        point = self.regularize(point, point_type=point_type)

        if point_type == 'vector':
            n_points, _ = point.shape

            rot_vec = point[:, :dim_rotations]

            jacobian = gs.zeros((n_points, ) + (dim, ) * 2)
            jacobian_rot = self.rotations.jacobian_translation(
                point=rot_vec,
                left_or_right=left_or_right,
                point_type=point_type)
            block_zeros_1 = gs.zeros(
                (n_points, dim_rotations, dim_translations))
            jacobian_block_line_1 = gs.concatenate(
                [jacobian_rot, block_zeros_1], axis=2)

            if left_or_right == 'left':
                rot_mat = self.rotations.matrix_from_rotation_vector(rot_vec)
                jacobian_trans = rot_mat
                block_zeros_2 = gs.zeros(
                    (n_points, dim_translations, dim_rotations))
                jacobian_block_line_2 = gs.concatenate(
                    [block_zeros_2, jacobian_trans], axis=2)

            else:
                inv_skew_mat = -self.rotations.skew_matrix_from_vector(rot_vec)
                eye = gs.to_ndarray(gs.eye(self.n), to_ndim=3)
                eye = gs.tile(eye, [n_points, 1, 1])
                jacobian_block_line_2 = gs.concatenate([inv_skew_mat, eye],
                                                       axis=2)

            jacobian = gs.concatenate(
                [jacobian_block_line_1, jacobian_block_line_2], axis=1)

            assert gs.ndim(jacobian) == 3

        elif point_type == 'matrix':
            raise NotImplementedError()

        return jacobian

    def group_exp_from_identity(self, tangent_vec, point_type=None):
        """
        Compute the group exponential of the tangent vector at the identity.
        """
        if point_type is None:
            point_type = self.default_point_type

        if point_type == 'vector':
            tangent_vec = gs.to_ndarray(tangent_vec, to_ndim=2)

            rotations = self.rotations
            dim_rotations = rotations.dimension

            rot_vec = tangent_vec[:, :dim_rotations]
            rot_vec = self.rotations.regularize(rot_vec, point_type=point_type)
            translation = tangent_vec[:, dim_rotations:]

            angle = gs.linalg.norm(rot_vec, axis=1)
            angle = gs.to_ndarray(angle, to_ndim=2, axis=1)

            skew_mat = self.rotations.skew_matrix_from_vector(rot_vec)
            sq_skew_mat = gs.matmul(skew_mat, skew_mat)

            mask_0 = gs.equal(angle, 0.)
            mask_close_0 = gs.isclose(angle, 0.) & ~mask_0
            mask_else = ~mask_0 & ~mask_close_0

            mask_0_float = gs.cast(mask_0, gs.float32)
            mask_close_0_float = gs.cast(mask_close_0, gs.float32)
            mask_else_float = gs.cast(mask_else, gs.float32)

            angle += mask_0_float * gs.ones_like(angle)

            coef_1 = gs.zeros_like(angle)
            coef_2 = gs.zeros_like(angle)

            coef_1 += mask_0_float * 1. / 2. * gs.ones_like(angle)
            coef_2 += mask_0_float * 1. / 6. * gs.ones_like(angle)

            coef_1 += mask_close_0_float * (
                TAYLOR_COEFFS_1_AT_0[0] + TAYLOR_COEFFS_1_AT_0[2] * angle**2 +
                TAYLOR_COEFFS_1_AT_0[4] * angle**4 +
                TAYLOR_COEFFS_1_AT_0[6] * angle**6)
            coef_2 += mask_close_0_float * (
                TAYLOR_COEFFS_2_AT_0[0] + TAYLOR_COEFFS_2_AT_0[2] * angle**2 +
                TAYLOR_COEFFS_2_AT_0[4] * angle**4 +
                TAYLOR_COEFFS_2_AT_0[6] * angle**6)

            coef_1 += mask_else_float * ((1. - gs.cos(angle)) / angle**2)
            coef_2 += mask_else_float * ((angle - gs.sin(angle)) / angle**3)

            n_tangent_vecs, _ = tangent_vec.shape
            group_exp_translation = gs.zeros((n_tangent_vecs, self.n))
            for i in range(n_tangent_vecs):
                translation_i = translation[i]
                term_1_i = coef_1[i] * gs.dot(translation_i,
                                              gs.transpose(skew_mat[i]))
                term_2_i = coef_2[i] * gs.dot(translation_i,
                                              gs.transpose(sq_skew_mat[i]))
                mask_i_float = gs.get_mask_i_float(i, n_tangent_vecs)
                group_exp_translation += mask_i_float * (translation_i +
                                                         term_1_i + term_2_i)

            group_exp = gs.concatenate([rot_vec, group_exp_translation],
                                       axis=1)

            group_exp = self.regularize(group_exp, point_type=point_type)
            return group_exp
        elif point_type == 'matrix':
            raise NotImplementedError()

    def group_log_from_identity(self, point, point_type=None):
        """
        Compute the group logarithm of the point at the identity.
        """
        if point_type is None:
            point_type = self.default_point_type

        point = self.regularize(point, point_type=point_type)

        rotations = self.rotations
        dim_rotations = rotations.dimension

        if point_type == 'vector':
            rot_vec = point[:, :dim_rotations]
            angle = gs.linalg.norm(rot_vec, axis=1)
            angle = gs.to_ndarray(angle, to_ndim=2, axis=1)

            translation = point[:, dim_rotations:]

            skew_rot_vec = rotations.skew_matrix_from_vector(rot_vec)
            sq_skew_rot_vec = gs.matmul(skew_rot_vec, skew_rot_vec)

            mask_close_0 = gs.isclose(angle, 0.)
            mask_close_pi = gs.isclose(angle, gs.pi)
            mask_else = ~mask_close_0 & ~mask_close_pi

            mask_close_0_float = gs.cast(mask_close_0, gs.float32)
            mask_close_pi_float = gs.cast(mask_close_pi, gs.float32)
            mask_else_float = gs.cast(mask_else, gs.float32)

            mask_0 = gs.isclose(angle, 0., atol=1e-6)
            mask_0_float = gs.cast(mask_0, gs.float32)
            angle += mask_0_float * gs.ones_like(angle)

            coef_1 = -0.5 * gs.ones_like(angle)
            coef_2 = gs.zeros_like(angle)

            coef_2 += mask_close_0_float * (1. / 12. + angle**2 / 720. +
                                            angle**4 / 30240. +
                                            angle**6 / 1209600.)

            delta_angle = angle - gs.pi
            coef_2 += mask_close_pi_float * (
                1. / PI2 + (PI2 - 8.) * delta_angle / (4. * PI3) -
                ((PI2 - 12.) * delta_angle**2 / (4. * PI4)) +
                ((-192. + 12. * PI2 + PI4) * delta_angle**3 / (48. * PI5)) -
                ((-240. + 12. * PI2 + PI4) * delta_angle**4 / (48. * PI6)) +
                ((-2880. + 120. * PI2 + 10. * PI4 + PI6) * delta_angle**5 /
                 (480. * PI7)) -
                ((-3360 + 120. * PI2 + 10. * PI4 + PI6) * delta_angle**6 /
                 (480. * PI8)))

            psi = 0.5 * angle * gs.sin(angle) / (1 - gs.cos(angle))
            coef_2 += mask_else_float * (1 - psi) / (angle**2)

            n_points, _ = point.shape
            group_log_translation = gs.zeros((n_points, self.n))
            for i in range(n_points):
                translation_i = translation[i]
                term_1_i = coef_1[i] * gs.dot(translation_i,
                                              gs.transpose(skew_rot_vec[i]))
                term_2_i = coef_2[i] * gs.dot(translation_i,
                                              gs.transpose(sq_skew_rot_vec[i]))
                mask_i_float = gs.get_mask_i_float(i, n_points)
                group_log_translation += mask_i_float * (translation_i +
                                                         term_1_i + term_2_i)

            group_log = gs.concatenate([rot_vec, group_log_translation],
                                       axis=1)

            assert gs.ndim(group_log) == 2

        elif point_type == 'matrix':
            raise NotImplementedError()

        return group_log

    def random_uniform(self, n_samples=1, point_type=None):
        """
        Sample in SE(n) with the uniform distribution.
        """
        if point_type is None:
            point_type = self.default_point_type

        random_rot_vec = self.rotations.random_uniform(n_samples,
                                                       point_type=point_type)
        random_translation = self.translations.random_uniform(n_samples)

        if point_type == 'vector':
            random_transfo = gs.concatenate(
                [random_rot_vec, random_translation], axis=1)

        elif point_type == 'matrix':
            raise NotImplementedError()

        random_transfo = self.regularize(random_transfo, point_type=point_type)
        return random_transfo

    def exponential_matrix(self, rot_vec):
        """
        Compute the exponential of the rotation matrix represented by rot_vec.
        """

        rot_vec = self.rotations.regularize(rot_vec)
        n_rot_vecs, _ = rot_vec.shape

        angle = gs.linalg.norm(rot_vec, axis=1)
        angle = gs.to_ndarray(angle, to_ndim=2, axis=1)

        skew_rot_vec = self.rotations.skew_matrix_from_vector(rot_vec)

        coef_1 = gs.empty_like(angle)
        coef_2 = gs.empty_like(coef_1)

        mask_0 = gs.equal(angle, 0)
        mask_0 = gs.squeeze(mask_0, axis=1)
        mask_close_to_0 = gs.isclose(angle, 0)
        mask_close_to_0 = gs.squeeze(mask_close_to_0, axis=1)
        mask_else = ~mask_0 & ~mask_close_to_0

        coef_1[mask_close_to_0] = (1. / 2. - angle[mask_close_to_0]**2 / 24.)
        coef_2[mask_close_to_0] = (1. / 6. - angle[mask_close_to_0]**3 / 120.)

        # TODO(nina): Check if the discountinuity at 0 is expected.
        coef_1[mask_0] = 0
        coef_2[mask_0] = 0

        coef_1[mask_else] = (angle[mask_else]**(-2) *
                             (1. - gs.cos(angle[mask_else])))
        coef_2[mask_else] = (angle[mask_else]**(-2) *
                             (1. -
                              (gs.sin(angle[mask_else]) / angle[mask_else])))

        term_1 = gs.zeros((n_rot_vecs, self.n, self.n))
        term_2 = gs.zeros_like(term_1)

        for i in range(n_rot_vecs):
            term_1[i] = gs.eye(self.n) + skew_rot_vec[i] * coef_1[i]
            term_2[i] = gs.matmul(skew_rot_vec[i], skew_rot_vec[i]) * coef_2[i]

        exponential_mat = term_1 + term_2
        assert exponential_mat.ndim == 3

        return exponential_mat

    def group_exponential_barycenter(self,
                                     points,
                                     weights=None,
                                     point_type=None):
        """
        Compute the group exponential barycenter in SE(n).
        """
        if point_type is None:
            point_type = self.default_point_type

        n_points = points.shape[0]
        assert n_points > 0

        if weights is None:
            weights = gs.ones((n_points, 1))

        weights = gs.to_ndarray(weights, to_ndim=2, axis=1)
        n_weights, _ = weights.shape
        assert n_points == n_weights

        dim = self.dimension
        rotations = self.rotations
        dim_rotations = rotations.dimension

        if point_type == 'vector':
            rotation_vectors = points[:, :dim_rotations]
            translations = points[:, dim_rotations:dim]
            assert rotation_vectors.shape == (n_points, dim_rotations)
            assert translations.shape == (n_points, self.n)

            mean_rotation = rotations.group_exponential_barycenter(
                points=rotation_vectors, weights=weights)
            mean_rotation_mat = rotations.matrix_from_rotation_vector(
                mean_rotation)

            matrix = gs.zeros((1, ) + (self.n, ) * 2)
            translation_aux = gs.zeros((1, self.n))

            inv_rot_mats = rotations.matrix_from_rotation_vector(
                -rotation_vectors)
            matrix_aux = gs.matmul(mean_rotation_mat, inv_rot_mats)
            assert matrix_aux.shape == (n_points, ) + (dim_rotations, ) * 2

            vec_aux = rotations.rotation_vector_from_matrix(matrix_aux)
            matrix_aux = self.exponential_matrix(vec_aux)
            matrix_aux = gs.linalg.inv(matrix_aux)

            for i in range(n_points):
                matrix += weights[i] * matrix_aux[i]
                translation_aux += weights[i] * gs.dot(
                    gs.matmul(matrix_aux[i], inv_rot_mats[i]), translations[i])

            mean_translation = gs.dot(
                translation_aux,
                gs.transpose(gs.linalg.inv(matrix), axes=(0, 2, 1)))

            exp_bar = gs.zeros((1, dim))
            exp_bar[0, :dim_rotations] = mean_rotation
            exp_bar[0, dim_rotations:dim] = mean_translation

        elif point_type == 'matrix':
            vector_points = self.rotation_vector_from_matrix(points)
            vector_exp_bar = self.group_exponential_barycenter(
                vector_points, weights, point_type='vector')
            exp_bar = self.matrix_from_rotation_vector(vector_exp_bar)
        return exp_bar
class TestBackendNumpy(geomstats.tests.TestCase):
    def setUp(self):
        warnings.simplefilter('ignore', category=ImportWarning)

        self.so3_group = SpecialOrthogonalGroup(n=3)
        self.n_samples = 2

    def test_logm(self):
        point = gs.array([[2., 0., 0.],
                          [0., 3., 0.],
                          [0., 0., 4.]])
        result = gs.linalg.logm(point)
        expected = gs.array([[0.693147180, 0., 0.],
                             [0., 1.098612288, 0.],
                             [0., 0., 1.38629436]])

        self.assertAllClose(result, expected)

    def test_expm_and_logm(self):
        point = gs.array([[2., 0., 0.],
                          [0., 3., 0.],
                          [0., 0., 4.]])
        result = gs.linalg.expm(gs.linalg.logm(point))
        expected = point

        self.assertAllClose(result, expected)

    def test_expm_vectorization(self):
        point = gs.array([[[2., 0., 0.],
                           [0., 3., 0.],
                           [0., 0., 4.]],
                          [[1., 0., 0.],
                           [0., 5., 0.],
                           [0., 0., 6.]]])

        expected = gs.array([[[7.38905609, 0., 0.],
                              [0., 20.0855369, 0.],
                              [0., 0., 54.5981500]],
                             [[2.718281828, 0., 0.],
                              [0., 148.413159, 0.],
                              [0., 0., 403.42879349]]])

        result = gs.linalg.expm(point)

        self.assertAllClose(result, expected)

    def test_logm_vectorization_diagonal(self):
        point = gs.array([[[2., 0., 0.],
                           [0., 3., 0.],
                           [0., 0., 4.]],
                          [[1., 0., 0.],
                           [0., 5., 0.],
                           [0., 0., 6.]]])

        expected = gs.array([[[0.693147180, 0., 0.],
                              [0., 1.09861228866, 0.],
                              [0., 0., 1.38629436]],
                             [[0., 0., 0.],
                              [0., 1.609437912, 0.],
                              [0., 0., 1.79175946]]])

        result = gs.linalg.logm(point)

        self.assertAllClose(result, expected)

    def test_expm_and_logm_vectorization_random_rotation(self):
        point = self.so3_group.random_uniform(self.n_samples)
        point = self.so3_group.matrix_from_rotation_vector(point)

        result = gs.linalg.expm(gs.linalg.logm(point))
        expected = point

        self.assertAllClose(result, expected)

    def test_expm_and_logm_vectorization(self):
        point = gs.array([[[2., 0., 0.],
                           [0., 3., 0.],
                           [0., 0., 4.]],
                          [[1., 0., 0.],
                           [0., 5., 0.],
                           [0., 0., 6.]]])
        result = gs.linalg.expm(gs.linalg.logm(point))
        expected = point

        self.assertAllClose(result, expected)

    def test_powerm_diagonal(self):
        power = .5
        point = gs.array([[1., 0., 0.],
                          [0., 4., 0.],
                          [0., 0., 9.]])
        result = gs.linalg.powerm(point, power)
        expected = gs.array([[1., 0., 0.],
                             [0., 2., 0.],
                             [0., 0., 3.]])

        self.assertAllClose(result, expected)

    def test_powerm(self):
        power = 2.4
        point = gs.array([[1., 0., 0.],
                          [0., 2.5, 1.5],
                          [0., 1.5, 2.5]])
        result = gs.linalg.powerm(point, power)
        result = gs.linalg.powerm(result, 1/power)
        expected = point

        self.assertAllClose(result, expected)

    def test_powerm_vectorized(self):
        power = 2.4
        points = gs.array([[[1., 0., 0.],
                            [0., 4., 0.],
                            [0., 0., 9.]],
                           [[1., 0., 0.],
                            [0., 2.5, 1.5],
                            [0., 1.5, 2.5]]])
        result = gs.linalg.powerm(points, power)
        result = gs.linalg.powerm(result, 1/power)
        expected = points

        self.assertAllClose(result, expected)