Exemple #1
0
    def test_linestrings_values(self):
        from geopandas.plotting import plot_linestring_collection

        fig, ax = plt.subplots()

        # default colormap
        coll = plot_linestring_collection(ax, self.lines, self.values)
        fig.canvas.draw_idle()
        cmap = plt.get_cmap()
        expected_colors = cmap(np.arange(self.N) / (self.N - 1))
        _check_colors(self.N, coll.get_color(), expected_colors)
        ax.cla()

        # specify colormap
        coll = plot_linestring_collection(ax, self.lines, self.values,
                                          cmap='RdBu')
        fig.canvas.draw_idle()
        cmap = plt.get_cmap('RdBu')
        expected_colors = cmap(np.arange(self.N) / (self.N - 1))
        _check_colors(self.N, coll.get_color(), expected_colors)
        ax.cla()

        # specify vmin/vmax
        coll = plot_linestring_collection(ax, self.lines, self.values,
                                          vmin=3, vmax=5)
        fig.canvas.draw_idle()
        cmap = plt.get_cmap()
        expected_colors = cmap([0])
        _check_colors(self.N, coll.get_color(), expected_colors)
        ax.cla()
Exemple #2
0
    def test_linestrings(self):
        from geopandas.plotting import plot_linestring_collection
        from matplotlib.collections import LineCollection

        fig, ax = plt.subplots()
        coll = plot_linestring_collection(ax, self.lines)
        assert isinstance(coll, LineCollection)
        ax.cla()

        # default: single default matplotlib color
        coll = plot_linestring_collection(ax, self.lines)
        _check_colors(self.N, coll.get_color(), [MPL_DFT_COLOR] * self.N)
        ax.cla()

        # specify single other color
        coll = plot_linestring_collection(ax, self.lines, color='g')
        _check_colors(self.N, coll.get_colors(), ['g'] * self.N)
        ax.cla()

        # specify edgecolor / facecolor
        coll = plot_linestring_collection(ax, self.lines, facecolor='g',
                                          edgecolor='r')
        _check_colors(self.N, coll.get_facecolors(), ['g'] * self.N)
        _check_colors(self.N, coll.get_edgecolors(), ['r'] * self.N)
        ax.cla()

        # list of colors
        coll = plot_linestring_collection(ax, self.lines,
                                          color=['r', 'g', 'b'])
        _check_colors(self.N, coll.get_colors(), ['r', 'g', 'b'])
        ax.cla()

        # pass through of kwargs
        coll = plot_linestring_collection(ax, self.lines, linestyle='--',
                                          linewidth=1)
        exp_ls = _style_to_linestring_onoffseq('dashed', 1)
        res_ls = coll.get_linestyle()[0]
        assert res_ls[0] == exp_ls[0]
        assert res_ls[1] == exp_ls[1]
        ax.cla()
Exemple #3
0
    def test_linestrings(self):
        from geopandas.plotting import plot_linestring_collection
        from matplotlib.collections import LineCollection

        fig, ax = plt.subplots()
        coll = plot_linestring_collection(ax, self.lines)
        assert isinstance(coll, LineCollection)
        ax.cla()

        # default: single default matplotlib color
        coll = plot_linestring_collection(ax, self.lines)
        _check_colors(self.N, coll.get_color(), [MPL_DFT_COLOR] * self.N)
        ax.cla()

        # specify single other color
        coll = plot_linestring_collection(ax, self.lines, color='g')
        _check_colors(self.N, coll.get_colors(), ['g'] * self.N)
        ax.cla()

        # specify edgecolor / facecolor
        coll = plot_linestring_collection(ax, self.lines, facecolor='g',
                                          edgecolor='r')
        _check_colors(self.N, coll.get_facecolors(), ['g'] * self.N)
        _check_colors(self.N, coll.get_edgecolors(), ['r'] * self.N)
        ax.cla()

        # list of colors
        coll = plot_linestring_collection(ax, self.lines,
                                          color=['r', 'g', 'b'])
        _check_colors(self.N, coll.get_colors(), ['r', 'g', 'b'])
        ax.cla()

        # pass through of kwargs
        coll = plot_linestring_collection(ax, self.lines, linestyle='--',
                                          linewidth=1)
        exp_ls = _style_to_linestring_onoffseq('dashed', 1)
        res_ls = coll.get_linestyle()[0]
        assert res_ls[0] == exp_ls[0]
        assert res_ls[1] == exp_ls[1]
        ax.cla()
Exemple #4
0
def m_plot_dataframe(s,
                     column=None,
                     colormap=None,
                     alpha=0.5,
                     edgecolor=None,
                     categorical=False,
                     legend=False,
                     axes=None,
                     scheme=None,
                     contour_poly_width=0.5,
                     k=5):
    """ Plot a GeoDataFrame

        Generate a plot of a GeoDataFrame with matplotlib.  If a
        column is specified, the plot coloring will be based on values
        in that column.  Otherwise, a categorical plot of the
        geometries in the `geometry` column will be generated.

        Parameters
        ----------

        GeoDataFrame
            The GeoDataFrame to be plotted.  Currently Polygon,
            MultiPolygon, LineString, MultiLineString and Point
            geometries can be plotted.

        column : str (default None)
            The name of the column to be plotted.

        categorical : bool (default False)
            If False, colormap will reflect numerical values of the
            column being plotted.  For non-numerical columns (or if
            column=None), this will be set to True.

        colormap : str (default 'Set1')
            The name of a colormap recognized by matplotlib.

        alpha : float (default 0.5)
            Alpha value for polygon fill regions.  Has no effect for
            lines or points.

        legend : bool (default False)
            Plot a legend (Experimental; currently for categorical
            plots only)

        axes : matplotlib.pyplot.Artist (default None)
            axes on which to draw the plot

        scheme : pysal.esda.mapclassify.Map_Classifier
            Choropleth classification schemes

        k   : int (default 5)
            Number of classes (ignored if scheme is None)


        Returns
        -------

        matplotlib axes instance
    """
    import matplotlib.pyplot as plt
    from matplotlib.lines import Line2D
    from matplotlib.colors import Normalize
    from matplotlib import cm

    if column is None:
        return plot_series(s.geometry,
                           colormap=colormap,
                           alpha=alpha,
                           axes=axes)
    else:
        if s[column].dtype is np.dtype('O'):
            categorical = True
        if categorical:
            if colormap is None:
                colormap = 'Set1'
            categories = list(set(s[column].values))
            categories.sort()
            valuemap = dict([(key, v) for (v, key) in enumerate(categories)])
            values = [valuemap[key] for key in s[column]]
        else:
            values = s[column]
        if scheme is not None:
            values = _mapclassify_choro(values, scheme, k=k)

        norm = Normalize(vmin=values.min(), vmax=values.max())
        cmap = cm.ScalarMappable(norm=norm, cmap=colormap)
        if not axes:
            fig = plt.gcf()
            fig.add_subplot(111, aspect='equal')
            ax = plt.gca()
        else:
            ax = axes
        for geom, value in zip(s.geometry, values):
            if geom.type == 'Polygon' or geom.type == 'MultiPolygon':
                m_plot_multipolygon(ax,
                                    geom,
                                    facecolor=cmap.to_rgba(value),
                                    edgecolor=edgecolor,
                                    linewidth=contour_poly_width,
                                    alpha=alpha)
            elif geom.type == 'LineString' or geom.type == 'MultiLineString':
                plot_linestring_collection(ax,
                                           GeoSeries([geom]),
                                           colors=[cmap.to_rgba(value)])
            # TODO: color point geometries
            elif geom.type == 'Point':
                plot_point_collection(ax, GeoSeries([geom]))
        if legend:
            if categorical:
                patches = []
                for value, cat in enumerate(categories):
                    patches.append(
                        Line2D([0], [0],
                               linestyle="none",
                               marker="o",
                               alpha=alpha,
                               markersize=10,
                               markerfacecolor=cmap.to_rgba(value)))
                ax.legend(patches, categories, numpoints=1, loc='best')
            else:
                # TODO: show a colorbar
                raise NotImplementedError
    plt.draw()
    return ax
    def test_linestrings(self):
        from geopandas.plotting import plot_linestring_collection
        from matplotlib.collections import LineCollection

        fig, ax = plt.subplots()
        coll = plot_linestring_collection(ax, self.lines)
        assert isinstance(coll, LineCollection)
        ax.cla()

        # default: single default matplotlib color
        coll = plot_linestring_collection(ax, self.lines)
        _check_colors(self.N, coll.get_color(), [MPL_DFT_COLOR] * self.N)
        ax.cla()

        # specify single other color
        coll = plot_linestring_collection(ax, self.lines, color="g")
        _check_colors(self.N, coll.get_colors(), ["g"] * self.N)
        ax.cla()

        # specify edgecolor / facecolor
        coll = plot_linestring_collection(ax,
                                          self.lines,
                                          facecolor="g",
                                          edgecolor="r")
        _check_colors(self.N, coll.get_facecolors(), ["g"] * self.N)
        _check_colors(self.N, coll.get_edgecolors(), ["r"] * self.N)
        ax.cla()

        # list of colors
        coll = plot_linestring_collection(ax,
                                          self.lines,
                                          color=["r", "g", "b"])
        _check_colors(self.N, coll.get_colors(), ["r", "g", "b"])
        ax.cla()

        coll = plot_linestring_collection(
            ax,
            self.lines,
            color=[(0.5, 0.5, 0.5, 0.5), (0.1, 0.2, 0.3, 0.5),
                   (0.4, 0.5, 0.6, 0.5)],
        )
        _check_colors(
            self.N,
            coll.get_colors(),
            [(0.5, 0.5, 0.5, 0.5), (0.1, 0.2, 0.3, 0.5), (0.4, 0.5, 0.6, 0.5)],
        )
        ax.cla()

        # pass through of kwargs
        coll = plot_linestring_collection(ax,
                                          self.lines,
                                          linestyle="--",
                                          linewidth=1)
        exp_ls = _style_to_linestring_onoffseq("dashed", 1)
        res_ls = coll.get_linestyle()[0]
        assert res_ls[0] == exp_ls[0]
        assert res_ls[1] == exp_ls[1]
        ax.cla()

        # not a color
        with pytest.raises(TypeError):
            plot_linestring_collection(ax, self.lines, color="not color")