Exemple #1
0
def test_opt_model():
    query = 'test'
    all_questions = geoserver_interface.download_questions(query)
    all_syntax_parses = questions_to_syntax_parses(all_questions)
    all_annotations = geoserver_interface.download_semantics(query)
    all_labels = geoserver_interface.download_labels(query)

    (tr_s, tr_a,
     tr_q), (te_s, te_a,
             te_q) = split([all_syntax_parses, all_annotations, all_questions],
                           0.5)
    tm = train_tag_model(all_syntax_parses, all_annotations)
    cm = train_semantic_model(tm, tr_s, tr_a)

    # te_m = questions_to_match_parses(te_q, all_labels)
    prs = evaluate_opt_model(cm, te_s, te_a, all_questions,
                             np.linspace(-2, 2, 21))

    ps, rs = zip(*prs.values())
    plt.plot(prs.keys(), ps, 'o', label='precision')
    plt.plot(prs.keys(), rs, 'o', label='recall')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102),
               loc=3,
               ncol=2,
               mode="expand",
               borderaxespad=0.)
    plt.show()
Exemple #2
0
def test_rule_model():
    query = 'test'
    all_questions = geoserver_interface.download_questions(query)
    all_syntax_parses = questions_to_syntax_parses(all_questions)
    all_annotations = geoserver_interface.download_semantics(query)
    all_labels = geoserver_interface.download_labels(query)

    (tr_s, tr_a), (te_s, te_a) = split((all_syntax_parses, all_annotations),
                                       0.5)

    tm = train_tag_model(all_syntax_parses, all_annotations)
    cm = train_semantic_model(tm, tr_s, tr_a)
    unary_prs, core_prs, is_prs, cc_prs, core_tree_prs = evaluate_rule_model(
        cm, te_s, te_a, np.linspace(0, 1, 101))

    plt.plot(core_tree_prs.keys(), core_tree_prs.values(), 'o')
    plt.show()
    plt.plot(unary_prs.keys(), unary_prs.values(), 'o')
    plt.show()
    plt.plot(core_prs.keys(), core_prs.values(), 'o')
    plt.show()
    plt.plot(is_prs.keys(), is_prs.values(), 'o')
    plt.show()
    plt.plot(cc_prs.keys(), cc_prs.values(), 'o')
    plt.show()
Exemple #3
0
def test_opt_model():
    query = 'test'
    all_questions = geoserver_interface.download_questions(query)
    all_syntax_parses = questions_to_syntax_parses(all_questions)
    all_annotations = geoserver_interface.download_semantics(query)
    all_labels = geoserver_interface.download_labels(query)

    (tr_s, tr_a, tr_q), (te_s, te_a, te_q) = split([all_syntax_parses, all_annotations, all_questions], 0.5)
    tm = train_tag_model(all_syntax_parses, all_annotations)
    cm = train_semantic_model(tm, tr_s, tr_a)

    # te_m = questions_to_match_parses(te_q, all_labels)
    prs = evaluate_opt_model(cm, te_s, te_a, all_questions, np.linspace(-2,2,21))

    ps, rs = zip(*prs.values())
    plt.plot(prs.keys(), ps, 'o', label='precision')
    plt.plot(prs.keys(), rs, 'o', label='recall')
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.)
    plt.show()
Exemple #4
0
def test_rule_model():
    query = 'test'
    all_questions = geoserver_interface.download_questions(query)
    all_syntax_parses = questions_to_syntax_parses(all_questions)
    all_annotations = geoserver_interface.download_semantics(query)
    all_labels = geoserver_interface.download_labels(query)

    (tr_s, tr_a), (te_s, te_a) = split((all_syntax_parses, all_annotations), 0.5)

    tm = train_tag_model(all_syntax_parses, all_annotations)
    cm = train_semantic_model(tm, tr_s, tr_a)
    unary_prs, core_prs, is_prs, cc_prs, core_tree_prs = evaluate_rule_model(cm, te_s, te_a, np.linspace(0,1,101))

    plt.plot(core_tree_prs.keys(), core_tree_prs.values(), 'o')
    plt.show()
    plt.plot(unary_prs.keys(), unary_prs.values(), 'o')
    plt.show()
    plt.plot(core_prs.keys(), core_prs.values(), 'o')
    plt.show()
    plt.plot(is_prs.keys(), is_prs.values(), 'o')
    plt.show()
    plt.plot(cc_prs.keys(), cc_prs.values(), 'o')
    plt.show()