def feature_extraction_single_rolled(self, img_file):
        block_size = 16

        if not os.path.exists(img_file):
            return None
        img = io.imread(img_file)
        h, w = img.shape
        mask = get_maps.get_quality_map_intensity(img)
        #if np.max(mask) == 0:
        #    print img_file
        #return None
        start = timeit.default_timer()
        mnt = self.minu_model.run_whole_image(img, minu_thr=0.2)
        stop = timeit.default_timer()
        minu_time = stop - start
        # show.show_minutiae(img, mnt, mask=mask, block=True, fname=None)
        # show.show_minutiae(img,mnt)

        # start = timeit.default_timer()
        des = descriptor.minutiae_descriptor_extraction(
            img,
            mnt,
            self.patch_types,
            self.des_models,
            self.patchIndexV,
            batch_size=256,
            patch_size=self.patch_size)
        # stop = timeit.default_timer()
        # des_time = stop - start
        print minu_time  #, des_time
        #texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False)

        dir_map, _ = get_maps.get_maps_STFT(img,
                                            patch_size=64,
                                            block_size=block_size,
                                            preprocess=True)
        #stop = timeit.default_timer()

        blkH = h // block_size
        blkW = w // block_size
        # dir_map = np.zeros((blkH,blkW))
        # print stop - start
        #blkH, blkW = dir_map.shape

        minu_template = template.MinuTemplate(h=h,
                                              w=w,
                                              blkH=blkH,
                                              blkW=blkW,
                                              minutiae=mnt,
                                              des=des,
                                              oimg=dir_map,
                                              mask=mask)

        rolled_template = template.Template()
        rolled_template.add_minu_template(minu_template)

        return rolled_template
Exemple #2
0
def demo_minutiae_extraction(img_path,minu_model_dir):

    img_files = glob.glob(img_path+'*.bmp')
    img_files.sort()
    minu_model = (minutiae_AEC.ImportGraph(minu_model_dir))
    block = True
    for i, img_file in enumerate(img_files):
        if i<11:
            continue
        img = io.imread(img_file)
        name = os.path.basename(img_file)
        h, w = img.shape
        mask = np.ones((h,w),dtype=np.uint8)

        minu_thr = 0.3

        texture_img = preprocessing.FastCartoonTexture(img)
        contrast_img = preprocessing.local_constrast_enhancement_gaussian(img)

        dir_map, fre_map = get_maps.get_maps_STFT(contrast_img, patch_size=64, block_size=16, preprocess=True)

        dict, spacing,_ = get_maps.construct_dictionary(ori_num=60)
        quality_map, fre_map = get_maps.get_quality_map_ori_dict(contrast_img, dict, spacing,
                                                                 dir_map=dir_map,
                                                                 block_size=16)
        enh_texture_img = filtering.gabor_filtering_pixel(contrast_img, dir_map + math.pi / 2, fre_map,
                                                          mask=mask,
                                                          block_size=16, angle_inc=3)

        mnt = minu_model.run(contrast_img, minu_thr=0.1)
        #mnt = minu_model.remove_spurious_minutiae(mnt, mask)
        #minutiae_sets.append(mnt)
        #fname = output_path + os.path.splitext(name)[0] + '_texture_img.jpeg'
        show.show_minutiae(contrast_img, mnt, block=block, fname=None)

        mnt = minu_model.run(texture_img, minu_thr=0.1)
        # mnt = minu_model.remove_spurious_minutiae(mnt, mask)
        # minutiae_sets.append(mnt)
        # fname = output_path + os.path.splitext(name)[0] + '_texture_img.jpeg'
        show.show_minutiae(texture_img, mnt, block=block, fname=None)

        print(i)
    def feature_extraction_single_rolled(self, img_file):
        block_size = 16

        img = io.imread(img_file)
        h, w = img.shape
        mask = get_maps.get_quality_map_intensity(img)
        mnt = self.minu_model.run(img, minu_thr=0.2)

        # show.show_minutiae(img,mnt)
        des = descriptor.minutiae_descriptor_extraction(img,
                                                        mnt,
                                                        self.patch_types,
                                                        self.des_models,
                                                        self.patchIndexV,
                                                        batch_size=128)

        #texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False)

        start = timeit.default_timer()
        dir_map, _ = get_maps.get_maps_STFT(img,
                                            patch_size=64,
                                            block_size=block_size,
                                            preprocess=True)
        stop = timeit.default_timer()
        print stop - start
        blkH, blkW = dir_map.shape

        minu_template = template.MinuTemplate(h=h,
                                              w=w,
                                              blkH=blkH,
                                              blkW=blkW,
                                              minutiae=mnt,
                                              des=des,
                                              oimg=dir_map,
                                              mask=mask)

        rolled_template = template.Template()
        rolled_template.add_minu_template(minu_template)

        return rolled_template
Exemple #4
0
    def feature_extraction_single_rolled(self,
                                         img_file,
                                         output_path=None,
                                         ppi=500):
        block_size = 16

        if not os.path.exists(img_file):
            return None
        img = io.imread(img_file, s_grey=True)
        if ppi != 500:
            img = cv2.resize(img, (0, 0), fx=500.0 / ppi, fy=500.0 / ppi)

        img = preprocessing.adjust_image_size(img, block_size)
        if len(img.shape) > 2:
            img = rgb2gray(img)
        h, w = img.shape
        start = timeit.default_timer()
        mask = get_maps.get_quality_map_intensity(img)
        stop = timeit.default_timer()
        print('time for cropping : %f' % (stop - start))
        start = timeit.default_timer()
        contrast_img = preprocessing.local_constrast_enhancement(img)
        mnt = self.minu_model.run_whole_image(contrast_img, minu_thr=0.1)
        stop = timeit.default_timer()
        minu_time = stop - start
        print('time for minutiae : %f' % (stop - start))

        name = os.path.basename(img_file)
        show.show_minutiae(img, mnt, block=True)
        return None

        start = timeit.default_timer()
        des = descriptor.minutiae_descriptor_extraction(
            img,
            mnt,
            self.patch_types,
            self.des_models,
            self.patchIndexV,
            batch_size=256,
            patch_size=self.patch_size)
        stop = timeit.default_timer()
        print('time for descriptor : %f' % (stop - start))

        dir_map, _ = get_maps.get_maps_STFT(img,
                                            patch_size=64,
                                            block_size=block_size,
                                            preprocess=True)

        blkH = h // block_size
        blkW = w // block_size

        minu_template = template.MinuTemplate(h=h,
                                              w=w,
                                              blkH=blkH,
                                              blkW=blkW,
                                              minutiae=mnt,
                                              des=des,
                                              oimg=dir_map,
                                              mask=mask)

        rolled_template = template.Template()
        rolled_template.add_minu_template(minu_template)

        start = timeit.default_timer()
        # texture templates
        stride = 16

        x = np.arange(24, w - 24, stride)
        y = np.arange(24, h - 24, stride)

        virtual_minutiae = []
        distFromBg = scipy.ndimage.morphology.distance_transform_edt(mask)
        for y_i in y:
            for x_i in x:
                if (distFromBg[y_i][x_i] <= 24):
                    continue
                ofY = int(y_i / 16)
                ofX = int(x_i / 16)

                ori = -dir_map[ofY][ofX]
                virtual_minutiae.append([x_i, y_i, ori])
        virtual_minutiae = np.asarray(virtual_minutiae)

        if len(virtual_minutiae) > 1000:
            virtual_minutiae = virtual_minutiae[:1000]
        print len(virtual_minutiae)
        if len(virtual_minutiae) > 3:
            virtual_des = descriptor.minutiae_descriptor_extraction(
                contrast_img,
                virtual_minutiae,
                self.patch_types,
                self.des_models,
                self.patchIndexV,
                batch_size=128)
            texture_template = template.TextureTemplate(
                h=h,
                w=w,
                minutiae=virtual_minutiae,
                des=virtual_des,
                mask=mask)
            rolled_template.add_texture_template(texture_template)
        stop = timeit.default_timer()
        print('time for texture : %f' % (stop - start))
        return rolled_template
Exemple #5
0
def feature_extraction_single_latent(raw_img_file,
                                     AEC_img_file,
                                     mask_file,
                                     patch_types=None,
                                     des_models=None):

    raw_img = io.imread(raw_img_file)
    AEC_img = io.imread(AEC_img_file)
    mask = io.imread(mask_file)

    texture_img = preprocessing.FastCartoonTexture(raw_img,
                                                   sigma=2.5,
                                                   show=False)

    dir_map, fre_map, rec_img = get_maps.get_maps_STFT(AEC_img,
                                                       patch_size=64,
                                                       block_size=16,
                                                       preprocess=True)

    descriptor_img = filtering.gabor_filtering_pixel(texture_img,
                                                     dir_map + math.pi / 2,
                                                     fre_map,
                                                     mask=mask,
                                                     block_size=16,
                                                     angle_inc=3)

    bin_img = binarization.binarization(texture_img,
                                        dir_map,
                                        block_size=16,
                                        mask=mask)

    enhanced_img = filtering.gabor_filtering_block(bin_img,
                                                   dir_map + math.pi / 2,
                                                   fre_map,
                                                   patch_size=64,
                                                   block_size=16)
    enhanced_img = filtering.gabor_filtering_block(enhanced_img,
                                                   dir_map + math.pi / 2,
                                                   fre_map,
                                                   patch_size=64,
                                                   block_size=16)

    enhanced_AEC_img = filtering.gabor_filtering_block(AEC_img,
                                                       dir_map + math.pi / 2,
                                                       fre_map,
                                                       patch_size=64,
                                                       block_size=16)
    bin_img = binarization.binarization(enhanced_AEC_img,
                                        dir_map,
                                        block_size=16,
                                        mask=mask)

    bin_img2 = 1 - bin_img
    thin_img = skeletonize(bin_img2)

    mnt, thin_img2 = crossnumber.extract_minutiae(1 - thin_img,
                                                  mask=mask,
                                                  R=10)
    crossnumber.show_minutiae(thin_img, mnt)

    patchSize = 160
    oriNum = 64
    patchIndexV = descriptor.get_patch_index(patchSize,
                                             patchSize,
                                             oriNum,
                                             isMinu=1)
    if len(descriptor_img.shape) == 2:
        h, w = descriptor_img.shape
        ret = np.empty((h, w, 3), dtype=np.float)
        ret[:, :, :] = descriptor_img[:, :, np.newaxis]
        descriptor_img = ret

    if len(enhanced_AEC_img.shape) == 2:
        h, w = enhanced_AEC_img.shape
        ret = np.empty((h, w, 3), dtype=np.float)
        ret[:, :, :] = enhanced_AEC_img[:, :, np.newaxis]
        enhanced_AEC_img = ret

    des = descriptor.minutiae_descriptor_extraction(enhanced_AEC_img,
                                                    mnt,
                                                    patch_types,
                                                    des_models,
                                                    patchIndexV,
                                                    batch_size=128)

    h, w = mask.shape
    blkH, blkW = dir_map.shape
    minu_template = template.MinuTemplate(h=h,
                                          w=w,
                                          blkH=blkH,
                                          blkW=blkW,
                                          minutiae=mnt,
                                          des=des,
                                          oimg=dir_map,
                                          mask=mask)

    latent_template = template.Template()
    latent_template.add_minu_template(minu_template)

    print des
def feature_extraction_single_latent(raw_img_file,
                                     AEC_img_file,
                                     mask_file,
                                     patch_types=None,
                                     des_models=None):
    ###
    #  input:
    # raw_img, original latent image
    # AEC_img, enhanced latent image by Autoencoder
    # mask:    ROI
    # main idea:
    # 1) Use AEC_img to estimate ridge flow and ridge spacing
    # 2) use AEC_image and raw_img to extract two different minutiae set
    ###
    raw_img = io.imread(raw_img_file)
    AEC_img = io.imread(AEC_img_file)
    mask = io.imread(mask_file)
    #mask = mask_dilation(mask, block_size=16)

    texture_img = preprocessing.FastCartoonTexture(raw_img,
                                                   sigma=2.5,
                                                   show=False)

    dir_map, fre_map, rec_img = get_maps.get_maps_STFT(AEC_img,
                                                       patch_size=64,
                                                       block_size=16,
                                                       preprocess=True)

    descriptor_img = filtering.gabor_filtering_pixel(texture_img,
                                                     dir_map + math.pi / 2,
                                                     fre_map,
                                                     mask=mask,
                                                     block_size=16,
                                                     angle_inc=3)

    bin_img = binarization.binarization(texture_img,
                                        dir_map,
                                        block_size=16,
                                        mask=mask)

    enhanced_img = filtering.gabor_filtering_block(bin_img,
                                                   dir_map + math.pi / 2,
                                                   fre_map,
                                                   patch_size=64,
                                                   block_size=16)
    enhanced_img = filtering.gabor_filtering_block(enhanced_img,
                                                   dir_map + math.pi / 2,
                                                   fre_map,
                                                   patch_size=64,
                                                   block_size=16)

    # plt.subplot(131), plt.imshow(raw_img, cmap='gray')
    # plt.title('Input image'), plt.xticks([]), plt.yticks([])
    # plt.subplot(132), plt.imshow(descriptor_img, cmap='gray')
    # plt.title('Feature image'), plt.xticks([]), plt.yticks([])
    #
    # plt.subplot(133), plt.imshow(enhanced_img, cmap='gray')
    # plt.title('Feature image'), plt.xticks([]), plt.yticks([])
    # plt.show(block=True)
    # plt.close()

    enhanced_AEC_img = filtering.gabor_filtering_block(AEC_img,
                                                       dir_map + math.pi / 2,
                                                       fre_map,
                                                       patch_size=64,
                                                       block_size=16)
    bin_img = binarization.binarization(enhanced_AEC_img,
                                        dir_map,
                                        block_size=16,
                                        mask=mask)
    # plt.imshow(AEC_img,cmap='gray')
    # plt.show()
    # plt.close()

    bin_img2 = 1 - bin_img
    thin_img = skeletonize(bin_img2)
    # thin_img2 = thin_img.astype(np.uint8)
    # thin_img2[thin_img2 > 0] = 255

    mnt, thin_img2 = crossnumber.extract_minutiae(1 - thin_img,
                                                  mask=mask,
                                                  R=10)
    crossnumber.show_minutiae(thin_img, mnt)

    patchSize = 160
    oriNum = 64
    patchIndexV = descriptor.get_patch_index(patchSize,
                                             patchSize,
                                             oriNum,
                                             isMinu=1)
    if len(descriptor_img.shape) == 2:
        h, w = descriptor_img.shape
        ret = np.empty((h, w, 3), dtype=np.float)
        ret[:, :, :] = descriptor_img[:, :, np.newaxis]
        descriptor_img = ret

    if len(enhanced_AEC_img.shape) == 2:
        h, w = enhanced_AEC_img.shape
        ret = np.empty((h, w, 3), dtype=np.float)
        ret[:, :, :] = enhanced_AEC_img[:, :, np.newaxis]
        enhanced_AEC_img = ret

    des = descriptor.minutiae_descriptor_extraction(enhanced_AEC_img,
                                                    mnt,
                                                    patch_types,
                                                    des_models,
                                                    patchIndexV,
                                                    batch_size=128)

    h, w = mask.shape
    blkH, blkW = dir_map.shape
    minu_template = template.MinuTemplate(h=h,
                                          w=w,
                                          blkH=blkH,
                                          blkW=blkW,
                                          minutiae=mnt,
                                          des=des,
                                          oimg=dir_map,
                                          mask=mask)

    latent_template = template.Template()
    latent_template.add_minu_template(minu_template)

    print des
Exemple #7
0
    def feature_extraction_single_latent_evaluation(self,img_file, mask_file, AEC_img_file,output_path = None ):

        img = io.imread(img_file)
        name = os.path.basename(img_file)
        AEC_img = io.imread(AEC_img_file)
        mask = io.imread(mask_file)
        h,w = mask.shape
        #mask = mask_dilation(mask, block_size=16)
        latent_template = template.Template()
        block = False
        minu_thr = 0.3

        contrast_img = preprocessing.local_constrast_enhancement(img)
        # Two ways for orientation field estimation
        #  Use the AEC_img and STFT on texture image
        dir_map_sets = []
        texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False)
        dir_map, fre_map = get_maps.get_maps_STFT(texture_img, patch_size=64, block_size=16, preprocess=True)
        dir_map_sets.append(dir_map)

        blkH, blkW = dir_map.shape

        dir_map, fre_map = get_maps.get_maps_STFT(AEC_img, patch_size=64, block_size=16, preprocess=True)
        dir_map_sets.append(dir_map)

        #dir_map, fre_map = get_maps.get_maps_STFT(contrast_img, patch_size=64, block_size=16, preprocess=True)
        #dir_map_sets.append(dir_map)

        # based on the OF, we can use texture image and AEC image for frequency field estimation

        fre_map_sets = []
        quality_map, fre_map = get_maps.get_quality_map_ori_dict(AEC_img, self.dict, self.spacing, dir_map=dir_map_sets[0],
                                                                 block_size=16)
        fre_map_sets.append(fre_map)

        quality_map, fre_map = get_maps.get_quality_map_ori_dict(contrast_img, self.dict, self.spacing,
                                                                 dir_map=dir_map_sets[1],
                                                                 block_size=16)
        fre_map_sets.append(fre_map)

        descriptor_imgs = [texture_img]
        descriptor_imgs.append(contrast_img)
        enh_texture_img = filtering.gabor_filtering_pixel(texture_img, dir_map + math.pi / 2, fre_map_sets[0], mask=mask,
                                                         block_size=16, angle_inc=3)
        descriptor_imgs.append(enh_texture_img)
        enh_contrast_img = filtering.gabor_filtering_pixel(contrast_img, dir_map + math.pi / 2, fre_map_sets[1], mask=mask,
                                                           block_size=16, angle_inc=3)
        descriptor_imgs.append(enh_contrast_img)

        minutiae_sets = []
        mnt = self.minu_model.run(texture_img, minu_thr=0.1)
        mnt = self.remove_spurious_minutiae(mnt, mask)
        minutiae_sets.append(mnt)
        fname = output_path + os.path.splitext(name)[0] + '_texture_img.jpeg'
        show.show_minutiae(texture_img, mnt, block=block, fname=fname)

        mnt = self.minu_model.run(contrast_img, minu_thr=0.1)
        mnt = self.remove_spurious_minutiae(mnt, mask)
        minutiae_sets.append(mnt)
        fname = output_path + os.path.splitext(name)[0] + '_contrast_img.jpeg'
        show.show_minutiae(contrast_img, mnt, block=block, fname=fname)

        mnt = self.minu_model.run(enh_texture_img, minu_thr=minu_thr)
        mnt = self.remove_spurious_minutiae(mnt, mask)
        minutiae_sets.append(mnt)
        fname = output_path + os.path.splitext(name)[0] + '_enh_texture_img.jpeg'
        show.show_minutiae(enh_texture_img, mnt, block=block, fname=fname)

        mnt = self.minu_model.run(enh_contrast_img, minu_thr=minu_thr)
        mnt = self.remove_spurious_minutiae(mnt, mask)
        minutiae_sets.append(mnt)
        fname = output_path + os.path.splitext(name)[0] + '_enh_contrast_img.jpeg'
        show.show_minutiae(enh_contrast_img, mnt, block=block, fname=fname)

        mnt = self.minu_model.run(AEC_img, minu_thr=minu_thr)
        mnt = self.remove_spurious_minutiae(mnt, mask)
        minutiae_sets.append(mnt)

        fname = output_path + os.path.splitext(name)[0] + '_AEC_img.jpeg'
        show.show_minutiae(AEC_img, mnt, block=block, fname=fname)



        for mnt in minutiae_sets:
            for des_img in descriptor_imgs:
                des = descriptor.minutiae_descriptor_extraction(des_img, mnt, self.patch_types, self.des_models,
                                                        self.patchIndexV,batch_size=128)
                minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt,
                                                  des=des, oimg=dir_map_sets[1], mask=mask)
                latent_template.add_minu_template(minu_template)

        return latent_template
Exemple #8
0
        ax0.imshow(image, cmap='gray')
        ax0.set_title('original image')
        ax0.axis('off')
        ax0.set_adjustable('box-forced')

        ax1.imshow(dilated, vmin=image.min(), vmax=image.max(), cmap='gray')
        ax1.set_title('dilated')
        ax1.axis('off')
        ax1.set_adjustable('box-forced')

        ax2.imshow(image - dilated, cmap='gray')
        ax2.set_title('image - dilated')
        ax2.axis('off')
        ax2.set_adjustable('box-forced')

        fig.tight_layout()
        plt.show()


if __name__ == '__main__':
    # construct ridge structure dictionary for quality estimation or ridge spacing estimation
    dict = get_maps.construct_dictionary()

    imgfiles = glob.glob('/home/kaicao/Dropbox/Research/Data/Latent/NISTSD27/image/*.bmp')
    imgfiles.sort()
    for imgfile in imgfiles:
        img = cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE)
        img = np.asarray(img, np.float32)
        texture = FastCartoonTexture(img)
        dir_map, _, _ = get_maps.get_maps_STFT(texture, patch_size=64, block_size=16, preprocess=False)