def compare_gmd(dict, folder, include_met=False):
    '''
    Compare mass calculated from Prospector with mass calculated from FAST

    :param dict: dictionary, with mass calculated from FAST (output of get_fast() function)
    :param folder: output folder in which Prospector output of relevant galaxies are stored
    :return: mass_diff, which is a dictionary with the FAST mass, Prospector mass stored for each object
    '''
    exists = []
    out = '/home/jonathan/.conda/envs/snowflakes/lib/python2.7/site-packages/prospector/git/out/' + folder
    for thing in os.listdir(out):
        if thing.endswith(".h5"):
            exists.append(thing)

    ### NEW COMP
    mass_diff = {}
    met_dict = {}
    dust_dict = {}
    count = 0
    for thing in exists:
        for key in dict:
            if thing.startswith(key):
                get = gmd.printer(out + thing)
                mass_diff[key] = [dict[key][1], get[0]]
                dust_dict = get[1]
                met_dict[key] = get[2]
    print(count)

    if include_met:
        return mass_diff, met_dict  # , dust_dict
    else:
        return mass_diff  # mass_diff[key][0] is the FAST mass, mass_diff[key][1] is the Prospector mass
Exemple #2
0
                # GET FAST MASS
                with open(mass) as tm:
                    for line in tm:
                        if line[0] != '#':
                            cols = line.split()
                            print(cols[0], str(fc_ob))
                            if cols[0] == str(fc_ob):
                                fast_mass = cols[2]
                print(fast_mass)
                # GET PROSP MASS
                out = '/home/jonathan/.conda/envs/snowflakes/lib/python2.7/site-packages/prospector/git/out/' + out_fold
                for plop in os.listdir(out):
                    if plop.startswith(str(
                            eelg_objs[i])) and plop.endswith(".h5"):
                        get = gmd.printer(out + plop)
                        prosp_mass = get[0]
                print(prosp_mass)
                print('these!')
                print(fast_file)
                with open(fast_file, 'r') as ffile:
                    wls = []
                    flx = []
                    for line in ffile:
                        if line[0] != '#':
                            cols = line.split()
                            wls.append(float(cols[0]) / (1 + red))
                            # 1 Jy = 10-23 erg s-1 cm-2 Hz-1 --> erg * 10^-19
                            # so 1 erg s-1 cm-2 Hz-1 = 10^23 Jy
                            # so 10^-19 erg s-1 cm-2 Hz-1 = 10^4 Jy
                            # ergs
Exemple #3
0
        if file.endswith(".h5"):
            eelgs1.append(file)
    sfgs1 = []
    for file in os.listdir(l_out):
        if file.endswith(".h5"):
            sfgs1.append(file)
    for glxy in eelgs:
        c += 1
        print(c)
        # file = glxy[0] + '_' + glxy[1] + '_' + glxy[2] + '_extra_out.pkl'
        file = pkls + glxy + '_extra_out.pkl'
        if os.path.exists(file):
            for mfile in eelgs1:
                if mfile.startswith(glxy):
                    use_mfile = mfile
            get_e = gmd.printer(out + use_mfile, percs=False, quiet=True)
            nummy += 1
            # temp = randraw(file)  # temp[0] lists num=1000 random posterior samples; temp[1] = time vector
            temp = randraw(
                file, get_e[np.random.randint(len(get_e))], num=n_samps
            )  # temp[0] lists num=1000 random posterior samples; temp[1] = time vector
            # temp = bootdraw(file)  # temp[0] lists num=1000 random posterior samples; temp[1] = time vector
            draws.append(temp[0])  # append random draw of ssfr
            # boots.append(bootstrap(temp[0]))
            t1.append(temp[1])
            print(len(temp[0]))  # 22, 1000
        else:
            print(file)

    lfile_loc = '/home/jonathan/.conda/envs/snowflakes/lib/python2.7/site-packages/prospector/git/sfg_ssfrs'
    for glxy in lbgs:
Exemple #4
0
    pklsf = '/home/jonathan/.conda/envs/snowflakes/lib/python2.7/site-packages/prospector/git/' + pkls[
        1]
    for file in os.listdir(outl):
        if file.endswith(".h5"):
            fasts.append(file)

    # get_e = np.zeros(shape=(4, len(gals)))  # 4 rows (dust, mass, gaslogz, logzsol), each row as long as eelgs
    onedraw = np.zeros(shape=(4, len(gals), 10**3))  # *10**3))
    onedrawf = np.zeros(shape=(4, len(fasts), 10**3))  # *10**3))
    for i in range(len(gals)):
        if os.path.exists(oute + gals[i]):
            # print('reg', printer(oute + gals[i]))
            # print('fast', printer(outl + fasts[i], percs=False, fast=True))

            onedraw[:, i, :] = gmd.printer(oute + gals[i],
                                           percs=False,
                                           draw1=True)
            onedrawf[:, i, :] = gmd.printer(outl + fasts[i],
                                            percs=False,
                                            fast=True,
                                            draw1=True)
            # for k in range(10**3):
        glxy = gnames[i]
        # fgal = fnames[i]
        file = pkls + glxy + '_extra_out.pkl'
        # ffile = pklsf + fgal + '_extra_out.pkl'
        print(i)
        randomdraws = sfh.randraw(
            file, onedraw[0, i, np.random.randint(10**3)])[0]  # size 22, num
        # note: above random randint chooses a random value of mass for galaxy
Exemple #5
0
    print(time, 'time')
    frac = np.zeros(shape=(len(eelgs), 10**3))
    s_frac = frac
    frac2 = np.zeros(shape=(len(eelgs), 10**3))
    frac100 = np.zeros(shape=(len(eelgs), 10**3))
    regs = np.zeros(shape=(len(eelgs), 10**3))

    frac_l = np.zeros(shape=(len(lbgs), 10**3))
    if write:
        eel_file = '/home/jonathan/.conda/envs/snowflakes/lib/python2.7/site-packages/prospector/git/eelg_fracs.txt'
        sfg_file = '/home/jonathan/.conda/envs/snowflakes/lib/python2.7/site-packages/prospector/git/sfg_fracs.txt'
        with open(eel_file, 'w+') as write_eel:
            write_eel.write('# ID SSFR\n\n')
            for i in range(len(eelgs)):
                print(i)
                get_e = gmd.printer(out + eelgs1[i], percs=False)
                for k in range(10**3):
                    # print((get_e[np.random.randint(len(get_e))]))
                    # print(sfh[i][np.random.randint(len(sfh[i]))])
                    regs[i, k] = np.percentile(sfh[i], [16., 50., 84.])[1] * time / \
                                 (10 ** np.percentile(get_e, [16., 50., 84.])[1])
                    s_frac[i, k] = sfh[i][np.random.randint(len(sfh[i]))]
                    frac[i,
                         k] = sfh[i][np.random.randint(len(sfh[i]))] * time / (
                             10**get_e[np.random.randint(len(get_e))])
                    frac2[i, k] = second[i][np.random.randint(len(second[i]))] * time / \
                                  (10 ** get_e[np.random.randint(len(get_e))])
                    frac100[i, k] = frac[i, k] + frac2[i, k]
                print(np.percentile(s_frac[i], [16., 50., 84.]), 'sfr')
                write_eel.write(
                    eelgs[i] + ' ' +
Exemple #6
0
    # for ind in range(len(allkeys)):
    #offsets = np.zeros(shape=(80, 6))  # [mass, dust, metal, sfh1, sfh2, sfh1/sfh2]
    #meds = np.zeros(shape=(80, 6))  # [mass, dust, metal, sfh1, sfh2, sfh1/sfh2]
    offsets = np.zeros(
        shape=(100, 6))  # [mass, dust, metal, sfh1, sfh2, sfh1/sfh2]  # BUCKET
    meds = np.zeros(
        shape=(100, 6))  # [mass, dust, metal, sfh1, sfh2, sfh1/sfh2]  # BUCKET
    #for i in range(20, 100):  # for each galaxy (0 through 99)
    for i in range(100):  # for each galaxy (0 through 99)
        # i = allkeys[ind]
        print(i, gals[str(i)])  # i = key
        #j = i - 20  # BUCKET
        if os.path.exists(oute + gals[str(i)]):
            #onedraw[j, :, :] = gmd.printer(oute + gals[str(i)], percs=False, sfhtest=True, draw1=True)
            onedraw[i, :, :] = gmd.printer(oute + gals[str(i)],
                                           percs=False,
                                           sfhtest=True,
                                           draw1=True)  # BUCKET

        # pars = git + 'eetest/sfhtest_' + str(i) + '_params.py'
        pars = git + 'new/sfhtest_' + str(i) + '_params.py'
        #i = j  # BUCKET
        with open(pars, 'r') as parfile:
            for line in parfile:
                if line.startswith("# Codename: "):
                    spaces = 0
                    inmass, indust, inmet, insfr1, insfr2 = '', '', '', '', ''
                    for char in line:
                        if char == ' ' or char == '_':
                            spaces += 1
                        elif spaces == 2:
                            inmass += char
Exemple #7
0
def printer(out_file, cvg=-1000, masstest=False, obj_true=None):
    objname = ''
    count = 0
    field = ''
    for i in kwargs['outname']:
        if i == '_':
            count += 1
        elif count == 0:
            objname += i
        elif count == 1:
            field += i
        elif count == 2:
            break
    print(field)

    res, pr, mod = bread.results_from(out_file)
    # print(res['chain'], 'chain')

    # ''' #

    # PRINT TRACE SHOWING HOW ITERATIONS CONVERGE FOR EACH PARAMETER
    bread.param_evol(res)  # print tracefig
    plt.show()
    # plt.savefig('delete' + '_tracefig2.png', bbox_inches='tight')

    # FIND WALKER, ITERATION THAT GIVE MAX (AND MIN) PROBABILITY
    # print(prob)
    prob = res['lnprobability'][..., cvg:]
    print('max', prob.max())
    row = prob.argmax() / len(prob[0])
    col = prob.argmax() - row * len(prob[0])
    walker, iteration = row, col
    print(walker, iteration)

    # ''' #

    truths = None
    print(objname)
    if masstest:
        print('hi?')
        import get_mass_dust as gmd
        oute = '/home/jonathan/.conda/envs/snowflakes/lib/python2.7/site-packages/prospector/git/out/out_efico/'
        for file in os.listdir(oute):
            if file.endswith(".h5") and file.startswith(obj_true):
                print(file, 'file')
                params = gmd.printer(oute + file, percs=False, masstest=True)
                mass = params[0]
                dust = params[6]
                met = params[7]
                gasmet = params[8]
                sfh = []
                for i in [1, 2, 3, 4, 5]:
                    sfh.append(params[i])
                truths = [np.log10(10**mass + 6.5*10**8), sfh[0], sfh[1], sfh[2], sfh[3], sfh[4], dust, met, gasmet]
    # PRINT CORNERFIG CONTOURS/HISTOGRAMS FOR EACH PARAMETER
    # truths now corrected for masses of efico output + 6.5e8
    # truths = [9.466 + 6.5e8, 0.22, 0.12, 0.22, 0.12, 0.1, 0.0737, -1.79, -0.33]  # 12552
    # truths = [9.83 + 6.5e8, 0.43, 0.08, 0.04, 0.12, 0.1, 0.32, -1.57, -0.35]  # 12105
    # truths = [9.51 + 6.5e8, 0.80, 0.02, 0.01, 0.04, 0.04, 0.54, -1.94, -0.31]  # 21442
    print(truths)
    bread.subtriangle(res, start=cvg, thin=5, truths=truths, show_titles=True)  # set start by when kl converges!
    plt.show()
    # plt.savefig('delete' + '_ctracefig2.png', bbox_inches='tight')
    # For FAST: truths = [mass, age, tau, dust2] (for 1824: [9.78, 0.25, -1., 0.00])
    return objname, field, res, mod, walker, iteration
def load_model(objname, field, agelims=[], **extras):
    # REDSHIFT
    # open file, load data

    photname, zname, filtername, filts = get_names(field)

    with open(photname, 'r') as f:
        hdr = f.readline().split()
    dtype = np.dtype([(hdr[1], 'S20')] + [(n, np.float) for n in hdr[2:]])
    dat = np.loadtxt(photname, comments='#', delimiter=' ', dtype=dtype)

    with open(zname, 'r') as fz:
        hdr_z = fz.readline().split()
    dtype_z = np.dtype([(hdr_z[1], 'S20')] + [(n, np.float) for n in hdr_z[2:]])
    zout = np.loadtxt(zname, comments='#', delimiter=' ', dtype=dtype_z)

    idx = dat['id'] == objname  # creates array of True/False: True when dat[id] = objname
    # zred = zout['z_spec'][idx][0]  # use z_spec
    # if zred == -99:  # if z_spec doesn't exist
    #     zred = zout['z_peak'][idx][0]  # use z_phot
    zred = 3.5

    print(zred, 'zred')

    # CALCULATE AGE OF THE UNIVERSE (TUNIV) AT REDSHIFT ZRED
    tuniv = WMAP9.age(zred).value
    print(tuniv, 'tuniv')

    n = [p['name'] for p in model_params]
    # model_params[n.index('tage')]['prior_args']['maxi'] = tuniv

    # NONPARAMETRIC SFH  # NEW
    '''
    agelims = [0.0, 8.0, 8.7, 9.0, (9.0 + (np.log10(tuniv*1e9) - 9.0)/3), (9.0 + 2 * (np.log10(tuniv*1e9) - 9.0)/3),
               np.log10(tuniv*1e9)]
    '''
    agelims = [0.0, 7.7, 8.0, 9.0, (9.0 + (np.log10(tuniv*1e9) - 9.0)/3), (9.0 + 2 * (np.log10(tuniv*1e9) - 9.0)/3),
               np.log10(tuniv*1e9)]
    ncomp = len(agelims) - 1
    agebins = np.array([agelims[:-1], agelims[1:]])  # why agelims[1:] instead of agelims[0:]?
    # print(agebins, 'grab these agebins')

    # INSERT REDSHIFT INTO MODEL PARAMETER DICTIONARY
    zind = n.index('zred')
    model_params[zind]['init'] = zred

    # model_params[n.index('tage')]['init'] = tuniv  # set tage to the age of the Universe
    # set dust and metallicity to be the same dust and metallicity you find in the actual fits:
    get_out = '/home/jonathan/.conda/envs/snowflakes/lib/python2.7/site-packages/prospector/git/out/out_efico/'
    for plop in os.listdir(get_out):
        if plop.startswith(str(objname)) and plop.endswith(".h5"):
            # print(str(objname))
            get = gmd.printer(get_out + plop)  # [mass, dust, metal, gasmet]
    model_params[n.index('logmass')]['init'] = 9.9  # 9.  # get[0]
    model_params[n.index('dust2')]['init'] = 0.3  # get[1]
    model_params[n.index('logzsol')]['init'] = -0.06  # -1.7  # get[2]
    model_params[n.index('gas_logz')]['init'] = get[3]

    # SET UP AGEBINS
    model_params[n.index('agebins')]['N'] = ncomp
    model_params[n.index('agebins')]['init'] = agebins.T

    # FRACTIONAL MASS INITIALIZATION  # NEW
    # N-1 bins, last is set by x = 1 - np.sum(sfr_fraction)
    model_params[n.index('sfr_fraction')]['N'] = ncomp-1
    model_params[n.index('sfr_fraction')]['prior_args'] = {
                                                           'maxi': np.full(ncomp-1, 1.0),
                                                           'mini': np.full(ncomp-1, 0.0),
                                                           # NOTE: ncomp instead of ncomp-1 makes the prior take into
                                                           # account the implicit Nth variable too
                                                          }
    eelg_frac1 = 0.3  # mfrac in most recent bin
    eelg_frac2 = 0.05  # mfrac in second most recent bin
    sf_inits = np.zeros(ncomp-1)+(1.-(eelg_frac1 + eelg_frac2))/(ncomp-2.)
    sf_inits[0] = eelg_frac1
    sf_inits[1] = eelg_frac2
    # print(sf_inits, 'look at me!!!')

    model_params[n.index('sfr_fraction')]['init'] = sf_inits  # np.zeros(ncomp-1)+1./ncomp
    model_params[n.index('sfr_fraction')]['init_disp'] = 0.02

    # CREATE MODEL
    model = BurstyModel(model_params)
    print('model')
    # print(model_params)
    # print(model_params[n.index('sfr_fraction')])

    return model
Exemple #9
0
def preplot(order=None,
            keys='e',
            file=None,
            line_idx=5,
            line_idx2=[5, 3],
            ratio=[False, False],
            outfold=None,
            fs_text=30,
            fs=20,
            color='purple',
            font={'fontname': 'Times'},
            types=False):
    '''

    :param keys:
    :param files:
    :param line_idx: single idx for desired line flux or EW, OR [idx1, idx2] for desired line ratios
    :param line_idx2: (if no ssfr) single idx for desired line flux or EW, OR [idx1, idx2] for desired line ratios
    :param ratio:
    :param fs_text:
    :param fs:
    :param font:
    :return:
    '''

    lines = [
        '[NII]6585', '[OII]3726', r'H$\alpha$6563', '[OII]3729', '[OIII]4960',
        '[OIII]5007', r'H$\beta$4861', r'H$\delta$4102'
    ]
    # names = '[NII]6585', '[OII]3726', 'Halpha6563', '[OII]3729', '[OIII]4960', '[OIII]5007', 'Hbeta4861', 'Hdelta4102'

    if keys != 's':
        ew, ew_order = list_ewflux(file, line_idx=line_idx,
                                   ratio=ratio[0])  # line1
        # xy[1] = list_ewflux(files[1], line_idx=line_idx2, ratio=ratio[1])  # line2
        labels = [
            r'Stellar Mass [$\log_{10}(\textrm{M} / \textrm{M}_\odot$)]',
            lines[line_idx] + r' Equivalent Width [\AA]'
        ]
        # labels[1] = lines[line_idx2[0]] + '/' + lines[line_idx2[1]]
    else:  # want ssfr
        ew = list_ssfr(file)  # ssfr
        labels = [
            r'Stellar Mass [log_{10}(M / M$_\odot$)]', 'SSFR [Gyr$^{-1}$]'
        ]

    out = outfold
    gals1 = []
    for file in os.listdir(out):
        if file.endswith(".h5"):
            gals1.append(file)
    gals = []
    relevent_idcs = []
    for ln in range(len(order)):
        for id in range(len(gals1)):
            if gals1[id].startswith(str(order[ln])):
                if order[ln] == 11462 or order[ln] == 21076 or order[
                        ln] == 21442:
                    relevent_idcs.append(ln)
                gals.append(gals1[id])
    # print('1', gals)  # print('2', order)  # print('3', ew_order)  # yay is good!

    mass = []
    for i in range(len(gals)):
        mass.append(gmd.printer(out + gals[i], percs=True)[0])  # median mass

    if types:
        return ew, mass, labels, relevent_idcs
    else:
        return ew, mass, labels
Exemple #10
0
def return_fracs(gals,
                 order,
                 pklfolder='pkl_efico/',
                 outfold='out_efico/',
                 base='fico',
                 ls=False):
    import ssfr_now as sfnow
    eelgs, lbgs1 = sa.get_gal_lists(base=[base, base], normal=True)
    git = '/home/jonathan/.conda/envs/snowflakes/lib/python2.7/site-packages/prospector/git/'
    out = git + 'out/' + outfold
    f_folder = git + pklfolder
    gals1 = gals
    if ls:
        gals1 = []
        for i in range(len(lbgs1)):
            file = f_folder + lbgs1[i] + '_extra_out.pkl'
            if os.path.exists(file):
                for ga in gals:
                    print(str(ga))
                    if file.startswith(f_folder + str(ga)):
                        gals1.append(lbgs1[i])
    # print(lbgs1)
    print(len(gals1), 'look')
    '''
    ordered = []
    for go in range(len(order)):
        for ga in range(len(gals1)):
            if gals1[ga].startswith(order[go]):
                ordered.append(gals1[ga])
    '''
    ordered = gals1

    time = 0.5 * 10**8
    sfh = []
    highfracs = []
    # print('masses', masses)
    frac = np.zeros(shape=(len(ordered), 10**3))
    for ord in range(len(ordered)):
        # print(ordered[ord])
        # file = f_folder + str(glxy) + '*_extra_out.pkl'
        for pkls in os.listdir(f_folder):
            if pkls.startswith(str(
                    ordered[ord])) and pkls.endswith('_extra_out.pkl'):
                file = f_folder + pkls
                sfh.append(sfnow.get_sfh(file)[0])  # 1st bin
    # for i in range(len(ordered)):
    # print(ord)
        file_i = None
        for outs in os.listdir(out):
            if outs.startswith(str(ordered[ord])) and outs.endswith('.h5'):
                file_i = out + outs
        get_e = gmd.printer(file_i, percs=False, quiet=True)
        for k in range(10**3):
            frac[ord, k] = sfh[ord][np.random.randint(len(
                sfh[ord]))] * time / (10**get_e[np.random.randint(len(get_e))])

    # print(frac)
    all_true = []
    for fr in range(len(frac)):
        for k in range(10**3):
            all_true.append(frac[fr, k])
    # print(all_fracs)

    return np.percentile(all_true, [16., 50., 84.])
Exemple #11
0
def mass_match_plot(x1,
                    y1,
                    color,
                    order,
                    lims=[9.5, 10.],
                    errs=True,
                    outfold=None,
                    ssfr_file=None,
                    fs_text=30,
                    fs=20,
                    font={'fontname': 'Times'}):
    x = []
    y = []
    do_these = []
    for i in range(len(x1)):
        if lims[0] <= x1[i] <= lims[1]:  # 9.55 <= x1[i] <= 9.9:
            do_these.append(order[i])
            x.append(x1[i])
            y.append(y1[i])

    plt.scatter(x=x, y=y, color=color, s=fs * 2)

    if errs:
        '''
        errx = np.percentile(x, [16., 50., 84.])
        erry = np.percentile(y, [16., 50., 84.])
        plt.errorbar(x=[errx[1]], y=[erry[1]], xerr=[[errx[1] - errx[0]], [errx[2] - errx[1]]],
                     yerr=[[erry[1] - erry[0]], [erry[2] - erry[1]]], color=color, fmt='*')
        '''
        X, Y, Z = density_estimation(x, y)
        # levels = np.arange(0.5, np.amax(Z), 0.02) + 0.02
        levels = np.arange(np.amax(Z) / 7., np.amax(Z),
                           np.amax(Z) / 7.) + (np.amax(Z) / 7.)
        if color == 'b':
            cmap = 'Blues'
        else:
            cmap = 'Purples'
        plt.contourf(X, Y, Z, levels=levels, cmap=cmap,
                     alpha=0.5)  # levels=levels  # [0.1, 0.2, 0.5, 1., 25.]

    out = outfold
    gals1 = []
    for file in os.listdir(out):
        if file.endswith(".h5"):
            gals1.append(file)
    gals = []
    for ln in range(len(do_these)):
        for id in range(len(gals1)):
            if gals1[id].startswith(str(do_these[ln])):
                gals.append(gals1[id])
    mass = []
    dust = []
    met = []
    for i in range(len(gals)):
        get = gmd.printer(out + gals[i],
                          percs=True)  # median mass, dust, gasmet, metallicity
        mass.append(get[0])
        dust.append(get[1])
        met.append(get[2])

    ssfrs = []
    counter = 0
    with open(ssfr_file, 'r') as ssfr:
        for line in ssfr:
            print(line)
            if line[0] != '#':
                cols = line.split()
                print(cols)
                for dt in range(len(do_these)):
                    if cols[0].startswith(str(do_these[dt])):
                        ssfrs.append(
                            float(cols[1]) * 10**9
                        )  # ssfrs are stored in 2nd column in file; convert to Gyr^-1
                        counter += 1

    return mass, dust, met, ssfrs, do_these