def main(): config = parse_config('../configs/turtlebot_demo.yaml') settings = MeshRendererSettings(enable_shadow=False, msaa=False) s = Simulator(mode='gui', image_width=256, image_height=256, rendering_settings=settings) scene = StaticIndoorScene('Rs', build_graph=True, pybullet_load_texture=True) s.import_scene(scene) turtlebot = Turtlebot(config) s.import_robot(turtlebot) for _ in range(10): obj = YCBObject('003_cracker_box') s.import_object(obj) obj.set_position_orientation(np.random.uniform(low=0, high=2, size=3), [0, 0, 0, 1]) print(s.renderer.instances) for i in range(10000): with Profiler('Simulator step'): turtlebot.apply_action([0.1, 0.1]) s.step() rgb = s.renderer.render_robot_cameras(modes=('rgb')) s.disconnect()
def test_import_building_viewing(): download_assets() download_demo_data() config = parse_config(os.path.join(gibson2.root_path, '../test/test.yaml')) s = Simulator(mode='headless') scene = StaticIndoorScene('Rs') s.import_scene(scene) assert s.objects == list(range(2)) turtlebot1 = Turtlebot(config) turtlebot2 = Turtlebot(config) turtlebot3 = Turtlebot(config) s.import_robot(turtlebot1) s.import_robot(turtlebot2) s.import_robot(turtlebot3) turtlebot1.set_position([0.5, 0, 0.5]) turtlebot2.set_position([0, 0, 0.5]) turtlebot3.set_position([-0.5, 0, 0.5]) for i in range(10): s.step() #turtlebot1.apply_action(np.random.randint(4)) #turtlebot2.apply_action(np.random.randint(4)) #turtlebot3.apply_action(np.random.randint(4)) s.disconnect()
def test_import_igsdf(scene_name, scene_source): hdr_texture = os.path.join( gibson2.ig_dataset_path, 'scenes', 'background', 'probe_02.hdr') hdr_texture2 = os.path.join( gibson2.ig_dataset_path, 'scenes', 'background', 'probe_03.hdr') if scene_source == "IG": scene_dir = get_ig_scene_path(scene_name) elif scene_source == "CUBICASA": scene_dir = get_cubicasa_scene_path(scene_name) else: scene_dir = get_3dfront_scene_path(scene_name) light_modulation_map_filename = os.path.join( scene_dir, 'layout', 'floor_lighttype_0.png') background_texture = os.path.join( gibson2.ig_dataset_path, 'scenes', 'background', 'urban_street_01.jpg') scene = InteractiveIndoorScene( scene_name, texture_randomization=False, object_randomization=False, scene_source=scene_source) settings = MeshRendererSettings(env_texture_filename=hdr_texture, env_texture_filename2=hdr_texture2, env_texture_filename3=background_texture, light_modulation_map_filename=light_modulation_map_filename, enable_shadow=True, msaa=True, light_dimming_factor=1.0) s = Simulator(mode='iggui', image_width=960, image_height=720, device_idx=0, rendering_settings=settings) s.import_ig_scene(scene) fpss = [] np.random.seed(0) _,(px,py,pz) = scene.get_random_point() s.viewer.px = px s.viewer.py = py s.viewer.pz = 1.7 s.viewer.update() for i in range(3000): if i == 2500: logId = p.startStateLogging(loggingType=p.STATE_LOGGING_PROFILE_TIMINGS, fileName='trace_beechwood') start = time.time() s.step() end = time.time() print("Elapsed time: ", end - start) print("Frequency: ", 1 / (end - start)) fpss.append(1 / (end - start)) p.stopStateLogging(logId) s.disconnect() print("end") plt.plot(fpss) plt.show()
def test_fetch(): s = Simulator(mode='headless') scene = StadiumScene() s.import_scene(scene) fetch = Fetch(config) s.import_robot(fetch) for i in range(100): fetch.calc_state() s.step() s.disconnect()
def test_import_building(): download_assets() download_demo_data() s = Simulator(mode='headless') scene = StaticIndoorScene('Rs') s.import_scene(scene, texture_scale=0.4) for i in range(15): s.step() assert s.objects == list(range(2)) s.disconnect()
def main(): s = Simulator(mode='gui', image_width=512, image_height=512, device_idx=0) scene = InteractiveIndoorScene( 'Rs_int', texture_randomization=True, object_randomization=False) s.import_ig_scene(scene) for i in range(10000): if i % 1000 == 0: scene.randomize_texture() s.step() s.disconnect()
def main(): s = Simulator(mode='gui', image_width=512, image_height=512, device_idx=0) scene = InteractiveIndoorScene('Rs_int', texture_randomization=False, object_randomization=False, load_object_categories=['chair'], load_room_types=['living_room']) s.import_ig_scene(scene) for _ in range(1000): s.step() s.disconnect()
def main(): s = Simulator(mode='gui', image_width=512, image_height=512, device_idx=0) for random_seed in range(10): scene = InteractiveIndoorScene('Rs_int', texture_randomization=False, object_randomization=True, object_randomization_idx=random_seed) s.import_ig_scene(scene) for i in range(1000): s.step() s.reload() s.disconnect()
def test_ant(): s = Simulator(mode='headless') scene = StadiumScene() s.import_scene(scene) ant = Ant(config) s.import_robot(ant) ant2 = Ant(config) s.import_robot(ant2) ant2.set_position([0, 2, 2]) nbody = p.getNumBodies() for i in range(100): s.step() s.disconnect() assert nbody == 6
def test_import_many_object(): s = Simulator(mode='headless') scene = StadiumScene() s.import_scene(scene) for i in range(30): obj = YCBObject('003_cracker_box') s.import_object(obj) for j in range(1000): s.step() last_obj = s.objects[-1] s.disconnect() assert (last_obj == 33)
def main(): s = Simulator(mode='gui', image_width=512, image_height=512, device_idx=0) scene = InteractiveIndoorScene( 'Rs_int', texture_randomization=False, object_randomization=False) s.import_ig_scene(scene) np.random.seed(0) for _ in range(10): pt = scene.get_random_point_by_room_type('living_room')[1] print('random point in living_room', pt) for _ in range(1000): s.step() s.disconnect()
def run_demo(self): config = parse_config( os.path.join(os.path.dirname(gibson2.__file__), '../examples/configs/turtlebot_demo.yaml')) s = Simulator(mode='gui', image_width=700, image_height=700) scene = StaticIndoorScene('Rs', pybullet_load_texture=True) s.import_scene(scene) turtlebot = Turtlebot(config) s.import_robot(turtlebot) for i in range(1000): turtlebot.apply_action([0.1, 0.5]) s.step() s.disconnect()
def test_simulator(): download_assets() s = Simulator(mode='headless') scene = StadiumScene() s.import_scene(scene) obj = YCBObject('006_mustard_bottle') for i in range(10): s.import_object(obj) obj = YCBObject('002_master_chef_can') for i in range(10): s.import_object(obj) for i in range(1000): s.step() s.disconnect()
def debug_renderer_scaling(): s = Simulator(mode='gui', image_width=512, image_height=512, physics_timestep=1 / float(100)) scene = EmptyScene() s.import_scene(scene, render_floor_plane=True) urdf_path = '/cvgl2/u/chengshu/ig_dataset_v5/objects/window/103070/103070_avg_size_0.urdf' obj = ArticulatedObject(urdf_path) s.import_object(obj) obj.set_position([0, 0, 0]) embed() z = stable_z_on_aabb(obj.body_id, [[0, 0, 0], [0, 0, 0]]) obj.set_position([0, 0, z]) embed() for _ in range(100000000000): s.step()
def main(): parser = argparse.ArgumentParser() parser.add_argument('--scene', type=str, help='Name of the scene in the iG Dataset') args = parser.parse_args() settings = MeshRendererSettings(enable_shadow=True, msaa=False) s = Simulator(mode='gui', image_width=256, image_height=256, rendering_settings=settings) scene = iGSDFScene(args.scene) s.import_ig_scene(scene) for i in range(10000): with Profiler('Simulator step'): s.step() s.disconnect()
def generate_trav_map(scene_name, scene_source, load_full_scene=True): if scene_source not in SCENE_SOURCE: raise ValueError('Unsupported scene source: {}'.format(scene_source)) if scene_source == "IG": scene_dir = get_ig_scene_path(scene_name) elif scene_source == "CUBICASA": scene_dir = get_cubicasa_scene_path(scene_name) else: scene_dir = get_3dfront_scene_path(scene_name) random.seed(0) scene = InteractiveIndoorScene(scene_name, build_graph=False, texture_randomization=False, scene_source=scene_source) if not load_full_scene: scene._set_first_n_objects(3) s = Simulator(mode='headless', image_width=512, image_height=512, device_idx=0) s.import_ig_scene(scene) if load_full_scene: scene.open_all_doors() for i in range(20): s.step() vertices_info, faces_info = s.renderer.dump() s.disconnect() if load_full_scene: trav_map_filename_format = 'floor_trav_{}.png' obstacle_map_filename_format = 'floor_{}.png' else: trav_map_filename_format = 'floor_trav_no_obj_{}.png' obstacle_map_filename_format = 'floor_no_obj_{}.png' gen_trav_map(vertices_info, faces_info, output_folder=os.path.join(scene_dir, 'layout'), trav_map_filename_format=trav_map_filename_format, obstacle_map_filename_format=obstacle_map_filename_format)
class ToyEnv(object): def __init__(self): config = parse_config('../../configs/turtlebot_demo.yaml') hdr_texture = os.path.join(gibson2.ig_dataset_path, 'scenes', 'background', 'probe_02.hdr') hdr_texture2 = os.path.join(gibson2.ig_dataset_path, 'scenes', 'background', 'probe_03.hdr') light_modulation_map_filename = os.path.join(gibson2.ig_dataset_path, 'scenes', 'Rs_int', 'layout', 'floor_lighttype_0.png') background_texture = os.path.join(gibson2.ig_dataset_path, 'scenes', 'background', 'urban_street_01.jpg') settings = MeshRendererSettings(enable_shadow=False, enable_pbr=False) self.s = Simulator(mode='headless', image_width=400, image_height=400, rendering_settings=settings) scene = StaticIndoorScene('Rs') self.s.import_scene(scene) #self.s.import_ig_scene(scene) self.robot = Turtlebot(config) self.s.import_robot(self.robot) for _ in range(5): obj = YCBObject('003_cracker_box') self.s.import_object(obj) obj.set_position_orientation( np.random.uniform(low=0, high=2, size=3), [0, 0, 0, 1]) print(self.s.renderer.instances) def step(self, a): self.robot.apply_action(a) self.s.step() frame = self.s.renderer.render_robot_cameras(modes=('rgb'))[0] return frame def close(self): self.s.disconnect()
def test_import_igsdf(): scene = InteractiveIndoorScene('Rs_int', texture_randomization=False, object_randomization=False) s = Simulator(mode='headless', image_width=512, image_height=512, device_idx=0) s.import_ig_scene(scene) s.renderer.use_pbr(use_pbr=True, use_pbr_mapping=True) for i in range(10): # if i % 100 == 0: # scene.randomize_texture() start = time.time() s.step() end = time.time() print("Elapsed time: ", end - start) print("Frequency: ", 1 / (end - start)) s.disconnect()
def show_action_sensor_space(): s = Simulator(mode='headless') scene = StadiumScene() s.import_scene(scene) turtlebot = Turtlebot(config) s.import_robot(turtlebot) turtlebot.set_position([0, 1, 0.5]) ant = Ant(config) s.import_robot(ant) ant.set_position([0, 2, 0.5]) h = Humanoid(config) s.import_robot(h) h.set_position([0, 3, 2]) jr = JR2(config) s.import_robot(jr) jr.set_position([0, 4, 0.5]) jr2 = JR2_Kinova(config) s.import_robot(jr2) jr2.set_position([0, 5, 0.5]) husky = Husky(config) s.import_robot(husky) husky.set_position([0, 6, 0.5]) quad = Quadrotor(config) s.import_robot(quad) quad.set_position([0, 7, 0.5]) for robot in s.robots: print(type(robot), len(robot.ordered_joints), robot.calc_state().shape) for i in range(100): s.step() s.disconnect()
def test_multiagent(): s = Simulator(mode='headless') scene = StadiumScene() s.import_scene(scene) turtlebot1 = Turtlebot(config) turtlebot2 = Turtlebot(config) turtlebot3 = Turtlebot(config) s.import_robot(turtlebot1) s.import_robot(turtlebot2) s.import_robot(turtlebot3) turtlebot1.set_position([1, 0, 0.5]) turtlebot2.set_position([0, 0, 0.5]) turtlebot3.set_position([-1, 0, 0.5]) nbody = p.getNumBodies() for i in range(100): s.step() s.disconnect() assert nbody == 7
def benchmark_rendering(scene_list, rendering_presets_list, modality_list): config = parse_config(os.path.join(gibson2.root_path, '../test/test.yaml')) assets_version = get_ig_assets_version() print('assets_version', assets_version) result = {} for scene_name in scene_list: for rendering_preset in rendering_presets_list: scene = InteractiveIndoorScene(scene_name, texture_randomization=False, object_randomization=False) settings = NamedRenderingPresets[rendering_preset] if rendering_preset == 'VISUAL_RL': image_width = 128 image_height = 128 else: image_width = 512 image_height = 512 s = Simulator(mode='headless', image_width=image_width, image_height=image_height, device_idx=0, rendering_settings=settings, physics_timestep=1 / 240.0) s.import_ig_scene(scene) turtlebot = Turtlebot(config) s.import_robot(turtlebot) for mode in modality_list: for _ in range(10): s.step() _ = s.renderer.render_robot_cameras(modes=(mode)) start = time.time() for _ in range(200): _ = s.renderer.render_robot_cameras(modes=(mode)) end = time.time() fps = 200 / (end - start) result[(scene_name, rendering_preset, mode)] = fps s.disconnect() return result
def test_import_box(): s = Simulator(mode='headless') scene = StadiumScene() s.import_scene(scene) print(s.objects) # wall = [pos, dim] wall = [[[0, 7, 1.01], [10, 0.2, 1]], [[0, -7, 1.01], [6.89, 0.1, 1]], [[7, -1.5, 1.01], [0.1, 5.5, 1]], [[-7, -1, 1.01], [0.1, 6, 1]], [[-8.55, 5, 1.01], [1.44, 0.1, 1]], [[8.55, 4, 1.01], [1.44, 0.1, 1]]] obstacles = [[[-0.5, 2, 1.01], [3.5, 0.1, 1]], [[4.5, -1, 1.01], [1.5, 0.1, 1]], [[-4, -2, 1.01], [0.1, 2, 1]], [[2.5, -4, 1.01], [1.5, 0.1, 1]]] for i in range(len(wall)): curr = wall[i] obj = Cube(curr[0], curr[1]) s.import_object(obj) for i in range(len(obstacles)): curr = obstacles[i] obj = Cube(curr[0], curr[1]) s.import_object(obj) config = parse_config(os.path.join(gibson2.root_path, '../test/test.yaml')) turtlebot1 = Turtlebot(config) turtlebot2 = Turtlebot(config) s.import_robot(turtlebot1) s.import_robot(turtlebot2) turtlebot1.set_position([6., -6., 0.]) turtlebot2.set_position([-3., 4., 0.]) for i in range(100): s.step() s.disconnect()
def test_import_rbo_object(): s = Simulator(mode='headless') try: scene = StadiumScene() s.import_scene(scene) obj = RBOObject('book') s.import_object(obj) obj2 = RBOObject('microwave') s.import_object(obj2) obj.set_position([0, 0, 2]) obj2.set_position([0, 1, 2]) obj3 = ArticulatedObject( os.path.join(gibson2.assets_path, 'models', 'scene_components', 'door.urdf')) s.import_object(obj3) for i in range(100): s.step() finally: s.disconnect()
def main(): config = parse_config('../configs/turtlebot_demo.yaml') settings = MeshRendererSettings() s = Simulator(mode='gui', image_width=256, image_height=256, rendering_settings=settings) scene = StaticIndoorScene('Rs', build_graph=True, pybullet_load_texture=True) s.import_scene(scene) turtlebot = Turtlebot(config) s.import_robot(turtlebot) for i in range(10000): with Profiler('Simulator step'): turtlebot.apply_action([0.1, -0.1]) s.step() lidar = s.renderer.get_lidar_all() print(lidar.shape) # TODO: visualize lidar scan s.disconnect()
def render_physics_gifs(main_urdf_file_and_offset): step_per_sec = 100 s = Simulator(mode='headless', image_width=512, image_height=512, physics_timestep=1 / float(step_per_sec)) root_dir = '/cvgl2/u/chengshu/ig_dataset_v5/objects' obj_count = 0 for i, obj_class_dir in enumerate(sorted(os.listdir(root_dir))): obj_class = obj_class_dir # if obj_class not in SELECTED_CLASSES: # continue obj_class_dir = os.path.join(root_dir, obj_class_dir) for obj_inst_dir in os.listdir(obj_class_dir): # if obj_inst_dir != '14402': # continue imgs = [] scene = EmptyScene() s.import_scene(scene, render_floor_plane=True) obj_inst_name = obj_inst_dir # urdf_path = obj_inst_name + '.urdf' obj_inst_dir = os.path.join(obj_class_dir, obj_inst_dir) urdf_path, offset = main_urdf_file_and_offset[obj_inst_dir] # urdf_path = os.path.join(obj_inst_dir, urdf_path) # print('urdf_path', urdf_path) obj = ArticulatedObject(urdf_path) s.import_object(obj) push_visual_marker = VisualMarker(radius=0.1) s.import_object(push_visual_marker) push_visual_marker.set_position([100, 100, 0.0]) z = stable_z_on_aabb(obj.body_id, [[0, 0, 0], [0, 0, 0]]) # offset is translation from the bounding box center to the base link frame origin # need to add another offset that is the translation from the base link frame origin to the inertial frame origin # p.resetBasePositionAndOrientation() sets the inertial frame origin instead of the base link frame origin # Assuming the bounding box center is at (0, 0, z) where z is half of the extent in z-direction base_link_to_inertial = p.getDynamicsInfo(obj.body_id, -1)[3] obj.set_position([ offset[0] + base_link_to_inertial[0], offset[1] + base_link_to_inertial[1], z ]) center, extent = get_center_extent(obj.body_id) # the bounding box center should be at (0, 0) on the xy plane and the bottom of the bounding box should touch the ground if not (np.linalg.norm(center[:2]) < 1e-3 and np.abs(center[2] - extent[2] / 2.0) < 1e-3): print('-' * 50) print('WARNING:', urdf_path, 'xy error', np.linalg.norm(center[:2]), 'z error', np.abs(center[2] - extent[2] / 2.0)) height = extent[2] max_half_extent = max(extent[0], extent[1]) / 2.0 px = max_half_extent * 2 py = max_half_extent * 2 pz = extent[2] * 1.2 camera_pose = np.array([px, py, pz]) # camera_pose = np.array([0.01, 0.01, 3]) s.renderer.set_camera(camera_pose, [0, 0, 0], [0, 0, 1]) # drop 1 second for _ in range(step_per_sec): s.step() frame = s.renderer.render(modes=('rgb')) imgs.append( Image.fromarray( (frame[0][:, :, :3] * 255).astype(np.uint8))) ray_start = [max_half_extent * 1.5, max_half_extent * 1.5, 0] ray_end = [-100.0, -100.0, 0] unit_force = np.array([-1.0, -1.0, 0.0]) unit_force /= np.linalg.norm(unit_force) force_mag = 100.0 ray_zs = [height * 0.5] valid_ray_z = False for trial in range(5): for ray_z in ray_zs: ray_start[2] = ray_z ray_end[2] = ray_z res = p.rayTest(ray_start, ray_end) if res[0][0] == obj.body_id: valid_ray_z = True break if valid_ray_z: break increment = 1 / (2**(trial + 1)) ray_zs = np.arange(increment / 2.0, 1.0, increment) * height # push 4 seconds for i in range(step_per_sec * 4): res = p.rayTest(ray_start, ray_end) object_id, link_id, _, hit_pos, hit_normal = res[0] if object_id != obj.body_id: break push_visual_marker.set_position(hit_pos) p.applyExternalForce(object_id, link_id, unit_force * force_mag, hit_pos, p.WORLD_FRAME) s.step() # print(hit_pos) frame = s.renderer.render(modes=('rgb')) rgb = frame[0][:, :, :3] # add red border border_width = 10 border_color = np.array([1.0, 0.0, 0.0]) rgb[:border_width, :, :] = border_color rgb[-border_width:, :, :] = border_color rgb[:, :border_width, :] = border_color rgb[:, -border_width:, :] = border_color imgs.append(Image.fromarray((rgb * 255).astype(np.uint8))) gif_path = '{}/visualizations/{}_cm_physics_v3.gif'.format( obj_inst_dir, obj_inst_name) imgs = imgs[::4] imgs[0].save(gif_path, save_all=True, append_images=imgs[1:], optimize=True, duration=40, loop=0) obj_count += 1 # print(obj_count, gif_path, len(imgs), valid_ray_z, ray_z) print(obj_count, gif_path) s.reload()
def main(): config = parse_config('../configs/fetch_p2p_nav.yaml') s = Simulator(mode='gui', physics_timestep=1 / 240.0) scene = EmptyScene() s.import_scene(scene) fetch = Fetch(config) s.import_robot(fetch) robot_id = fetch.robot_ids[0] arm_joints = joints_from_names(robot_id, [ 'torso_lift_joint', 'shoulder_pan_joint', 'shoulder_lift_joint', 'upperarm_roll_joint', 'elbow_flex_joint', 'forearm_roll_joint', 'wrist_flex_joint', 'wrist_roll_joint' ]) #finger_joints = joints_from_names(robot_id, ['l_gripper_finger_joint', 'r_gripper_finger_joint']) fetch.robot_body.reset_position([0, 0, 0]) fetch.robot_body.reset_orientation([0, 0, 1, 0]) x, y, z = fetch.get_end_effector_position() #set_joint_positions(robot_id, finger_joints, [0.04,0.04]) print(x, y, z) visual_marker = p.createVisualShape(p.GEOM_SPHERE, radius=0.02) marker = p.createMultiBody(baseVisualShapeIndex=visual_marker) #max_limits = [0,0] + get_max_limits(robot_id, arm_joints) + [0.05,0.05] #min_limits = [0,0] + get_min_limits(robot_id, arm_joints) + [0,0] #rest_position = [0,0] + list(get_joint_positions(robot_id, arm_joints)) + [0.04,0.04] max_limits = [0, 0] + get_max_limits(robot_id, arm_joints) min_limits = [0, 0] + get_min_limits(robot_id, arm_joints) rest_position = [0, 0] + list(get_joint_positions(robot_id, arm_joints)) joint_range = list(np.array(max_limits) - np.array(min_limits)) joint_range = [item + 1 for item in joint_range] jd = [0.1 for item in joint_range] print(max_limits) print(min_limits) def accurateCalculateInverseKinematics(robotid, endEffectorId, targetPos, threshold, maxIter): sample_fn = get_sample_fn(robotid, arm_joints) set_joint_positions(robotid, arm_joints, sample_fn()) it = 0 while it < maxIter: jointPoses = p.calculateInverseKinematics(robotid, endEffectorId, targetPos, lowerLimits=min_limits, upperLimits=max_limits, jointRanges=joint_range, restPoses=rest_position, jointDamping=jd) set_joint_positions(robotid, arm_joints, jointPoses[2:10]) ls = p.getLinkState(robotid, endEffectorId) newPos = ls[4] dist = np.linalg.norm(np.array(targetPos) - np.array(newPos)) if dist < threshold: break it += 1 print("Num iter: " + str(it) + ", threshold: " + str(dist)) return jointPoses while True: with Profiler("Simulation step"): fetch.robot_body.reset_position([0, 0, 0]) fetch.robot_body.reset_orientation([0, 0, 1, 0]) threshold = 0.01 maxIter = 100 joint_pos = accurateCalculateInverseKinematics( robot_id, fetch.parts['gripper_link'].body_part_index, [x, y, z], threshold, maxIter)[2:10] #set_joint_positions(robot_id, finger_joints, [0.04, 0.04]) s.step() keys = p.getKeyboardEvents() for k, v in keys.items(): if (k == p.B3G_RIGHT_ARROW and (v & p.KEY_IS_DOWN)): x += 0.01 if (k == p.B3G_LEFT_ARROW and (v & p.KEY_IS_DOWN)): x -= 0.01 if (k == p.B3G_UP_ARROW and (v & p.KEY_IS_DOWN)): y += 0.01 if (k == p.B3G_DOWN_ARROW and (v & p.KEY_IS_DOWN)): y -= 0.01 if (k == ord('z') and (v & p.KEY_IS_DOWN)): z += 0.01 if (k == ord('x') and (v & p.KEY_IS_DOWN)): z -= 0.01 p.resetBasePositionAndOrientation(marker, [x, y, z], [0, 0, 0, 1]) s.disconnect()
def main(): config = parse_config( os.path.join(gibson2.example_config_path, 'turtlebot_demo.yaml')) #robot configuration file path # settings = MeshRendererSettings() #generating renderer settings object #generating simulator object #s = Simulator(mode='headless', #simulating without gui s = Simulator( mode='headless', #simulating with gui # image_width=256, #robot camera pixel width # image_height=256, #robot camera pixel height # vertical_fov=40, #robot camera view angle (from floor to ceiling 40 degrees) ) #rendering_settings=settings) #generating scene object scene = InteractiveIndoorScene( 'Benevolence_1_int', #scene name: Benevolence, floor number: 1, does it include interactive objects: yes (int). I pick Benevolence on purpose as it is the most memory friendly scene in the iGibson dataset. build_graph= True, #builds the connectivity graph over the given facedown traversibility map (floor plan) waypoint_resolution= 0.1, #radial distance between 2 consecutive waypoints (10 cm) pybullet_load_texture=True ) #do you want to include texture and material properties? (you need this for object interaction) s.import_ig_scene(scene) #loading the scene object in the simulator object turtlebot = Turtlebot(config) #generating the robot object s.import_robot( turtlebot) #loading the robot object in the simulator object init_pos = turtlebot.get_position( ) #getting the initial position of the robot base [X:meters, Y:meters, Z:meters] (base: robot's main body. it may have links and the associated joints too. links and joints have positions and orientations as well.) init_or = turtlebot.get_rpy( ) #getting the initial Euler angles of the robot base [Roll: radians, Pitch: radians, Yaw: radians] #sampling random goal states in a desired room of the apartment np.random.seed(0) goal = scene.get_random_point_by_room_type('living_room')[ 1] #sampling a random point in the living room rnd_path = scene.get_shortest_path( 0, init_pos[0:2], goal[0:2], entire_path=True )[0] #generate the "entire" a* path between the initial and goal nodes for i in range(len(rnd_path[0]) - 1): with Profiler( 'Simulator step' ): #iGibson simulation loop requieres this context manager rgb_camera = np.array( s.renderer.render_robot_cameras(modes='rgb') ) #probing RGB data, you can also probe rgbd or even optical flow if robot has that property in its config file (.yaml file) plt.imshow(rgb_camera[0, :, :, 3]) #calling sampled RGB data lidar = s.renderer.get_lidar_all() #probing 360 degrees lidar data delta_pos = smt_path[:, i + 1] - smt_path[:, i] #direction vector between 2 consucutive waypoints delta_yaw = np.arctan2( delta_pos[1], delta_pos[0] ) #the yaw angle of the robot base while following the sampled bezier path delta_qua = e2q( init_or[0], init_or[1], delta_yaw) #transforming robot base Euler angles to quaternion turtlebot.set_position_orientation([ smt_path[0, i], smt_path[1, i], init_pos[2] ], delta_qua) #setting the robot base position and the orientation s.step() #proceed one step ahead in simulation time s.disconnect()
class BaseEnv(gym.Env): ''' Base Env class, follows OpenAI Gym interface Handles loading scene and robot Functions like reset and step are not implemented ''' def __init__(self, config_file, scene_id=None, mode='headless', action_timestep=1 / 10.0, physics_timestep=1 / 240.0, render_to_tensor=False, device_idx=0): """ :param config_file: config_file path :param scene_id: override scene_id in config file :param mode: headless or gui mode :param action_timestep: environment executes action per action_timestep second :param physics_timestep: physics timestep for pybullet :param device_idx: device_idx: which GPU to run the simulation and rendering on """ self.config = parse_config(config_file) if scene_id is not None: self.config['scene_id'] = scene_id self.mode = mode self.action_timestep = action_timestep self.physics_timestep = physics_timestep self.texture_randomization_freq = self.config.get( 'texture_randomization_freq', None) self.object_randomization_freq = self.config.get( 'object_randomization_freq', None) self.object_randomization_idx = 0 self.num_object_randomization_idx = 10 enable_shadow = self.config.get('enable_shadow', False) enable_pbr = self.config.get('enable_pbr', True) texture_scale = self.config.get('texture_scale', 1.0) settings = MeshRendererSettings(enable_shadow=enable_shadow, enable_pbr=enable_pbr, msaa=False, texture_scale=texture_scale) self.simulator = Simulator( mode=mode, physics_timestep=physics_timestep, render_timestep=action_timestep, image_width=self.config.get('image_width', 128), image_height=self.config.get('image_height', 128), vertical_fov=self.config.get('vertical_fov', 90), device_idx=device_idx, render_to_tensor=render_to_tensor, rendering_settings=settings) self.load() def reload(self, config_file): """ Reload another config file Thhis allows one to change the configuration on the fly :param config_file: new config file path """ self.config = parse_config(config_file) self.simulator.reload() self.load() def reload_model(self, scene_id): """ Reload another scene model This allows one to change the scene on the fly :param scene_id: new scene_id """ self.config['scene_id'] = scene_id self.simulator.reload() self.load() def reload_model_object_randomization(self): """ Reload the same model, with the next object randomization random seed """ if self.object_randomization_freq is None: return self.object_randomization_idx = (self.object_randomization_idx + 1) % \ (self.num_object_randomization_idx) self.simulator.reload() self.load() def get_next_scene_random_seed(self): """ Get the next scene random seed """ if self.object_randomization_freq is None: return None return self.scene_random_seeds[self.scene_random_seed_idx] def load(self): """ Load the scene and robot """ if self.config['scene'] == 'empty': scene = EmptyScene() self.simulator.import_scene(scene, load_texture=self.config.get( 'load_texture', True)) elif self.config['scene'] == 'stadium': scene = StadiumScene() self.simulator.import_scene(scene, load_texture=self.config.get( 'load_texture', True)) elif self.config['scene'] == 'gibson': scene = StaticIndoorScene( self.config['scene_id'], waypoint_resolution=self.config.get('waypoint_resolution', 0.2), num_waypoints=self.config.get('num_waypoints', 10), build_graph=self.config.get('build_graph', False), trav_map_resolution=self.config.get('trav_map_resolution', 0.1), trav_map_erosion=self.config.get('trav_map_erosion', 2), pybullet_load_texture=self.config.get('pybullet_load_texture', False), ) self.simulator.import_scene(scene, load_texture=self.config.get( 'load_texture', True)) elif self.config['scene'] == 'igibson': scene = InteractiveIndoorScene( self.config['scene_id'], waypoint_resolution=self.config.get('waypoint_resolution', 0.2), num_waypoints=self.config.get('num_waypoints', 10), build_graph=self.config.get('build_graph', False), trav_map_resolution=self.config.get('trav_map_resolution', 0.1), trav_map_erosion=self.config.get('trav_map_erosion', 2), trav_map_type=self.config.get('trav_map_type', 'with_obj'), pybullet_load_texture=self.config.get('pybullet_load_texture', False), texture_randomization=self.texture_randomization_freq is not None, object_randomization=self.object_randomization_freq is not None, object_randomization_idx=self.object_randomization_idx, should_open_all_doors=self.config.get('should_open_all_doors', False), load_object_categories=self.config.get( 'load_object_categories', None), load_room_types=self.config.get('load_room_types', None), load_room_instances=self.config.get('load_room_instances', None), ) # TODO: Unify the function import_scene and take out of the if-else clauses first_n = self.config.get('_set_first_n_objects', -1) if first_n != -1: scene._set_first_n_objects(first_n) self.simulator.import_ig_scene(scene) if self.config['robot'] == 'Turtlebot': robot = Turtlebot(self.config) elif self.config['robot'] == 'Husky': robot = Husky(self.config) elif self.config['robot'] == 'Ant': robot = Ant(self.config) elif self.config['robot'] == 'Humanoid': robot = Humanoid(self.config) elif self.config['robot'] == 'JR2': robot = JR2(self.config) elif self.config['robot'] == 'JR2_Kinova': robot = JR2_Kinova(self.config) elif self.config['robot'] == 'Freight': robot = Freight(self.config) elif self.config['robot'] == 'Fetch': robot = Fetch(self.config) elif self.config['robot'] == 'Locobot': robot = Locobot(self.config) else: raise Exception('unknown robot type: {}'.format( self.config['robot'])) self.scene = scene self.robots = [robot] for robot in self.robots: self.simulator.import_robot(robot) def clean(self): """ Clean up """ if self.simulator is not None: self.simulator.disconnect() def close(self): """ Synonymous function with clean """ self.clean() def simulator_step(self): """ Step the simulation. This is different from environment step that returns the next observation, reward, done, info. """ self.simulator.step() def step(self, action): """ Overwritten by subclasses """ return NotImplementedError() def reset(self): """ Overwritten by subclasses """ return NotImplementedError() def set_mode(self, mode): """ Set simulator mode """ self.simulator.mode = mode
class ToyEnvInt(object): def __init__(self, robot='turtlebot', scene='Rs_int'): config = parse_config('../../configs/turtlebot_demo.yaml') hdr_texture = os.path.join(gibson2.ig_dataset_path, 'scenes', 'background', 'probe_02.hdr') hdr_texture2 = os.path.join(gibson2.ig_dataset_path, 'scenes', 'background', 'probe_03.hdr') light_modulation_map_filename = os.path.join(gibson2.ig_dataset_path, 'scenes', 'Rs_int', 'layout', 'floor_lighttype_0.png') background_texture = os.path.join(gibson2.ig_dataset_path, 'scenes', 'background', 'urban_street_01.jpg') scene = InteractiveIndoorScene(scene, texture_randomization=False, object_randomization=False) #scene._set_first_n_objects(5) scene.open_all_doors() settings = MeshRendererSettings( env_texture_filename=hdr_texture, env_texture_filename2=hdr_texture2, env_texture_filename3=background_texture, light_modulation_map_filename=light_modulation_map_filename, enable_shadow=True, msaa=True, light_dimming_factor=1.0, optimized=True) self.s = Simulator(mode='headless', image_width=400, image_height=400, rendering_settings=settings) self.s.import_ig_scene(scene) if robot == 'turtlebot': self.robot = Turtlebot(config) else: self.robot = Fetch(config) self.s.import_robot(self.robot) for _ in range(5): obj = YCBObject('003_cracker_box') self.s.import_object(obj) obj.set_position_orientation( np.random.uniform(low=0, high=2, size=3), [0, 0, 0, 1]) print(self.s.renderer.instances) def step(self, a): action = np.zeros(self.robot.action_space.shape) if isinstance(self.robot, Turtlebot): action[0] = a[0] action[1] = a[1] else: action[1] = a[0] action[0] = a[1] self.robot.apply_action(action) self.s.step() frame = self.s.renderer.render_robot_cameras(modes=('rgb'))[0] return frame def close(self): self.s.disconnect()
################################################################################################################## ##tried changing robot control to position and torque but failed,from the documentation it seems turtle bot only## ############################################supports joint velocity############################################### ################################################################################################################## #robot.load() #robot.set_position(position) #robot.robot_specific_reset() #robot.keep_still() #print(robot.action_dim) #print(robot.control) ############################################adding keyboard functionality##################################### #print(p.getKeyboardEvents()) ##############################################start the simulation############################################ for i in range(360): #p.stepSimulation() s.step() #time.sleep(1./360.) #for i in range(1): #action = np.random.uniform(-1, 1, robot.action_dim) #print(action) #action=np.array([0,0.5]) #turtlebot.apply_action(action) #print(robot.get_angular_velocity()) #robot.move_forward(forward=0.5) #p.stepSimulation() #s.step() #robot.keep_still() #time.sleep(1./360.) for i in range(1000): #with Profiler('Simulator step'):