Exemple #1
0
def main():
    config = parse_config('../configs/turtlebot_demo.yaml')
    settings = MeshRendererSettings(enable_shadow=False, msaa=False)
    s = Simulator(mode='gui',
                  image_width=256,
                  image_height=256,
                  rendering_settings=settings)

    scene = StaticIndoorScene('Rs',
                              build_graph=True,
                              pybullet_load_texture=True)
    s.import_scene(scene)
    turtlebot = Turtlebot(config)
    s.import_robot(turtlebot)

    for _ in range(10):
        obj = YCBObject('003_cracker_box')
        s.import_object(obj)
        obj.set_position_orientation(np.random.uniform(low=0, high=2, size=3),
                                     [0, 0, 0, 1])

    print(s.renderer.instances)

    for i in range(10000):
        with Profiler('Simulator step'):
            turtlebot.apply_action([0.1, 0.1])
            s.step()
            rgb = s.renderer.render_robot_cameras(modes=('rgb'))
    s.disconnect()
Exemple #2
0
def test_import_building_viewing():
    download_assets()
    download_demo_data()
    config = parse_config(os.path.join(gibson2.root_path, '../test/test.yaml'))

    s = Simulator(mode='headless')
    scene = StaticIndoorScene('Rs')
    s.import_scene(scene)
    assert s.objects == list(range(2))

    turtlebot1 = Turtlebot(config)
    turtlebot2 = Turtlebot(config)
    turtlebot3 = Turtlebot(config)

    s.import_robot(turtlebot1)
    s.import_robot(turtlebot2)
    s.import_robot(turtlebot3)

    turtlebot1.set_position([0.5, 0, 0.5])
    turtlebot2.set_position([0, 0, 0.5])
    turtlebot3.set_position([-0.5, 0, 0.5])

    for i in range(10):
        s.step()
        #turtlebot1.apply_action(np.random.randint(4))
        #turtlebot2.apply_action(np.random.randint(4))
        #turtlebot3.apply_action(np.random.randint(4))

    s.disconnect()
def test_import_igsdf(scene_name, scene_source):
    hdr_texture = os.path.join(
        gibson2.ig_dataset_path, 'scenes', 'background', 'probe_02.hdr')
    hdr_texture2 = os.path.join(
        gibson2.ig_dataset_path, 'scenes', 'background', 'probe_03.hdr')

    if scene_source == "IG":
        scene_dir = get_ig_scene_path(scene_name)
    elif scene_source == "CUBICASA":
        scene_dir = get_cubicasa_scene_path(scene_name)
    else:
        scene_dir = get_3dfront_scene_path(scene_name)

    light_modulation_map_filename = os.path.join(
        scene_dir, 'layout', 'floor_lighttype_0.png')
    background_texture = os.path.join(
        gibson2.ig_dataset_path, 'scenes', 'background', 
        'urban_street_01.jpg')

    scene = InteractiveIndoorScene(
                    scene_name, 
                    texture_randomization=False, 
                    object_randomization=False,
                    scene_source=scene_source)

    settings = MeshRendererSettings(env_texture_filename=hdr_texture,
                                    env_texture_filename2=hdr_texture2,
                                    env_texture_filename3=background_texture,
                                    light_modulation_map_filename=light_modulation_map_filename,
                                    enable_shadow=True, msaa=True,
                                    light_dimming_factor=1.0)
    s = Simulator(mode='iggui', image_width=960,
                  image_height=720, device_idx=0, rendering_settings=settings)

    s.import_ig_scene(scene)
    fpss = []

    np.random.seed(0)
    _,(px,py,pz) = scene.get_random_point()
    s.viewer.px = px
    s.viewer.py = py
    s.viewer.pz = 1.7
    s.viewer.update()
    
    for i in range(3000):
        if i == 2500:
            logId = p.startStateLogging(loggingType=p.STATE_LOGGING_PROFILE_TIMINGS, fileName='trace_beechwood')
        start = time.time()
        s.step()
        end = time.time()
        print("Elapsed time: ", end - start)
        print("Frequency: ", 1 / (end - start))
        fpss.append(1 / (end - start))
    p.stopStateLogging(logId)
    s.disconnect()
    print("end")
    
    plt.plot(fpss)
    plt.show()
Exemple #4
0
def test_fetch():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)
    fetch = Fetch(config)
    s.import_robot(fetch)
    for i in range(100):
        fetch.calc_state()
        s.step()
    s.disconnect()
Exemple #5
0
def test_import_building():
    download_assets()
    download_demo_data()

    s = Simulator(mode='headless')
    scene = StaticIndoorScene('Rs')
    s.import_scene(scene, texture_scale=0.4)
    for i in range(15):
        s.step()
    assert s.objects == list(range(2))
    s.disconnect()
def main():
    s = Simulator(mode='gui', image_width=512,
                  image_height=512, device_idx=0)
    scene = InteractiveIndoorScene(
        'Rs_int', texture_randomization=True, object_randomization=False)
    s.import_ig_scene(scene)

    for i in range(10000):
        if i % 1000 == 0:
            scene.randomize_texture()
        s.step()
    s.disconnect()
Exemple #7
0
def main():
    s = Simulator(mode='gui', image_width=512, image_height=512, device_idx=0)
    scene = InteractiveIndoorScene('Rs_int',
                                   texture_randomization=False,
                                   object_randomization=False,
                                   load_object_categories=['chair'],
                                   load_room_types=['living_room'])
    s.import_ig_scene(scene)

    for _ in range(1000):
        s.step()
    s.disconnect()
def main():
    s = Simulator(mode='gui', image_width=512, image_height=512, device_idx=0)

    for random_seed in range(10):
        scene = InteractiveIndoorScene('Rs_int',
                                       texture_randomization=False,
                                       object_randomization=True,
                                       object_randomization_idx=random_seed)
        s.import_ig_scene(scene)
        for i in range(1000):
            s.step()
        s.reload()

    s.disconnect()
Exemple #9
0
def test_ant():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)
    ant = Ant(config)
    s.import_robot(ant)
    ant2 = Ant(config)
    s.import_robot(ant2)
    ant2.set_position([0, 2, 2])
    nbody = p.getNumBodies()
    for i in range(100):
        s.step()
    s.disconnect()
    assert nbody == 6
Exemple #10
0
def test_import_many_object():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)

    for i in range(30):
        obj = YCBObject('003_cracker_box')
        s.import_object(obj)

    for j in range(1000):
        s.step()
    last_obj = s.objects[-1]
    s.disconnect()
    assert (last_obj == 33)
def main():
    s = Simulator(mode='gui', image_width=512,
                  image_height=512, device_idx=0)
    scene = InteractiveIndoorScene(
        'Rs_int', texture_randomization=False, object_randomization=False)
    s.import_ig_scene(scene)

    np.random.seed(0)
    for _ in range(10):
        pt = scene.get_random_point_by_room_type('living_room')[1]
        print('random point in living_room', pt)

    for _ in range(1000):
        s.step()
    s.disconnect()
Exemple #12
0
    def run_demo(self):
        config = parse_config(
            os.path.join(os.path.dirname(gibson2.__file__),
                         '../examples/configs/turtlebot_demo.yaml'))

        s = Simulator(mode='gui', image_width=700, image_height=700)
        scene = StaticIndoorScene('Rs', pybullet_load_texture=True)
        s.import_scene(scene)
        turtlebot = Turtlebot(config)
        s.import_robot(turtlebot)

        for i in range(1000):
            turtlebot.apply_action([0.1, 0.5])
            s.step()

        s.disconnect()
def test_simulator():
    download_assets()
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)
    obj = YCBObject('006_mustard_bottle')

    for i in range(10):
        s.import_object(obj)

    obj = YCBObject('002_master_chef_can')
    for i in range(10):
        s.import_object(obj)

    for i in range(1000):
        s.step()
    s.disconnect()
def debug_renderer_scaling():
    s = Simulator(mode='gui',
                  image_width=512,
                  image_height=512,
                  physics_timestep=1 / float(100))
    scene = EmptyScene()
    s.import_scene(scene, render_floor_plane=True)
    urdf_path = '/cvgl2/u/chengshu/ig_dataset_v5/objects/window/103070/103070_avg_size_0.urdf'

    obj = ArticulatedObject(urdf_path)
    s.import_object(obj)
    obj.set_position([0, 0, 0])
    embed()

    z = stable_z_on_aabb(obj.body_id, [[0, 0, 0], [0, 0, 0]])
    obj.set_position([0, 0, z])
    embed()
    for _ in range(100000000000):
        s.step()
Exemple #15
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--scene',
                        type=str,
                        help='Name of the scene in the iG Dataset')
    args = parser.parse_args()
    settings = MeshRendererSettings(enable_shadow=True, msaa=False)
    s = Simulator(mode='gui',
                  image_width=256,
                  image_height=256,
                  rendering_settings=settings)

    scene = iGSDFScene(args.scene)
    s.import_ig_scene(scene)

    for i in range(10000):
        with Profiler('Simulator step'):
            s.step()
    s.disconnect()
Exemple #16
0
def generate_trav_map(scene_name, scene_source, load_full_scene=True):
    if scene_source not in SCENE_SOURCE:
        raise ValueError('Unsupported scene source: {}'.format(scene_source))
    if scene_source == "IG":
        scene_dir = get_ig_scene_path(scene_name)
    elif scene_source == "CUBICASA":
        scene_dir = get_cubicasa_scene_path(scene_name)
    else:
        scene_dir = get_3dfront_scene_path(scene_name)
    random.seed(0)
    scene = InteractiveIndoorScene(scene_name,
                                   build_graph=False,
                                   texture_randomization=False,
                                   scene_source=scene_source)
    if not load_full_scene:
        scene._set_first_n_objects(3)
    s = Simulator(mode='headless',
                  image_width=512,
                  image_height=512,
                  device_idx=0)
    s.import_ig_scene(scene)

    if load_full_scene:
        scene.open_all_doors()

    for i in range(20):
        s.step()

    vertices_info, faces_info = s.renderer.dump()
    s.disconnect()

    if load_full_scene:
        trav_map_filename_format = 'floor_trav_{}.png'
        obstacle_map_filename_format = 'floor_{}.png'
    else:
        trav_map_filename_format = 'floor_trav_no_obj_{}.png'
        obstacle_map_filename_format = 'floor_no_obj_{}.png'

    gen_trav_map(vertices_info,
                 faces_info,
                 output_folder=os.path.join(scene_dir, 'layout'),
                 trav_map_filename_format=trav_map_filename_format,
                 obstacle_map_filename_format=obstacle_map_filename_format)
Exemple #17
0
class ToyEnv(object):
    def __init__(self):
        config = parse_config('../../configs/turtlebot_demo.yaml')
        hdr_texture = os.path.join(gibson2.ig_dataset_path, 'scenes',
                                   'background', 'probe_02.hdr')
        hdr_texture2 = os.path.join(gibson2.ig_dataset_path, 'scenes',
                                    'background', 'probe_03.hdr')
        light_modulation_map_filename = os.path.join(gibson2.ig_dataset_path,
                                                     'scenes', 'Rs_int',
                                                     'layout',
                                                     'floor_lighttype_0.png')
        background_texture = os.path.join(gibson2.ig_dataset_path, 'scenes',
                                          'background', 'urban_street_01.jpg')

        settings = MeshRendererSettings(enable_shadow=False, enable_pbr=False)

        self.s = Simulator(mode='headless',
                           image_width=400,
                           image_height=400,
                           rendering_settings=settings)
        scene = StaticIndoorScene('Rs')
        self.s.import_scene(scene)
        #self.s.import_ig_scene(scene)
        self.robot = Turtlebot(config)
        self.s.import_robot(self.robot)

        for _ in range(5):
            obj = YCBObject('003_cracker_box')
            self.s.import_object(obj)
            obj.set_position_orientation(
                np.random.uniform(low=0, high=2, size=3), [0, 0, 0, 1])
        print(self.s.renderer.instances)

    def step(self, a):
        self.robot.apply_action(a)
        self.s.step()
        frame = self.s.renderer.render_robot_cameras(modes=('rgb'))[0]
        return frame

    def close(self):
        self.s.disconnect()
def test_import_igsdf():
    scene = InteractiveIndoorScene('Rs_int',
                                   texture_randomization=False,
                                   object_randomization=False)
    s = Simulator(mode='headless',
                  image_width=512,
                  image_height=512,
                  device_idx=0)
    s.import_ig_scene(scene)

    s.renderer.use_pbr(use_pbr=True, use_pbr_mapping=True)
    for i in range(10):
        # if i % 100 == 0:
        #     scene.randomize_texture()
        start = time.time()
        s.step()
        end = time.time()
        print("Elapsed time: ", end - start)
        print("Frequency: ", 1 / (end - start))

    s.disconnect()
Exemple #19
0
def show_action_sensor_space():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)

    turtlebot = Turtlebot(config)
    s.import_robot(turtlebot)
    turtlebot.set_position([0, 1, 0.5])

    ant = Ant(config)
    s.import_robot(ant)
    ant.set_position([0, 2, 0.5])

    h = Humanoid(config)
    s.import_robot(h)
    h.set_position([0, 3, 2])

    jr = JR2(config)
    s.import_robot(jr)
    jr.set_position([0, 4, 0.5])

    jr2 = JR2_Kinova(config)
    s.import_robot(jr2)
    jr2.set_position([0, 5, 0.5])

    husky = Husky(config)
    s.import_robot(husky)
    husky.set_position([0, 6, 0.5])

    quad = Quadrotor(config)
    s.import_robot(quad)
    quad.set_position([0, 7, 0.5])

    for robot in s.robots:
        print(type(robot), len(robot.ordered_joints), robot.calc_state().shape)

    for i in range(100):
        s.step()

    s.disconnect()
Exemple #20
0
def test_multiagent():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)
    turtlebot1 = Turtlebot(config)
    turtlebot2 = Turtlebot(config)
    turtlebot3 = Turtlebot(config)

    s.import_robot(turtlebot1)
    s.import_robot(turtlebot2)
    s.import_robot(turtlebot3)

    turtlebot1.set_position([1, 0, 0.5])
    turtlebot2.set_position([0, 0, 0.5])
    turtlebot3.set_position([-1, 0, 0.5])

    nbody = p.getNumBodies()
    for i in range(100):
        s.step()

    s.disconnect()
    assert nbody == 7
def benchmark_rendering(scene_list, rendering_presets_list, modality_list):
    config = parse_config(os.path.join(gibson2.root_path, '../test/test.yaml'))
    assets_version = get_ig_assets_version()
    print('assets_version', assets_version)
    result = {}
    for scene_name in scene_list:
        for rendering_preset in rendering_presets_list:
            scene = InteractiveIndoorScene(scene_name,
                                           texture_randomization=False,
                                           object_randomization=False)
            settings = NamedRenderingPresets[rendering_preset]
            if rendering_preset == 'VISUAL_RL':
                image_width = 128
                image_height = 128
            else:
                image_width = 512
                image_height = 512
            s = Simulator(mode='headless',
                          image_width=image_width,
                          image_height=image_height,
                          device_idx=0,
                          rendering_settings=settings,
                          physics_timestep=1 / 240.0)
            s.import_ig_scene(scene)
            turtlebot = Turtlebot(config)
            s.import_robot(turtlebot)

            for mode in modality_list:
                for _ in range(10):
                    s.step()
                    _ = s.renderer.render_robot_cameras(modes=(mode))
                start = time.time()
                for _ in range(200):
                    _ = s.renderer.render_robot_cameras(modes=(mode))
                end = time.time()
                fps = 200 / (end - start)
                result[(scene_name, rendering_preset, mode)] = fps
            s.disconnect()
    return result
Exemple #22
0
def test_import_box():
    s = Simulator(mode='headless')
    scene = StadiumScene()
    s.import_scene(scene)
    print(s.objects)
    # wall = [pos, dim]
    wall = [[[0, 7, 1.01], [10, 0.2, 1]], [[0, -7, 1.01], [6.89, 0.1, 1]],
            [[7, -1.5, 1.01], [0.1, 5.5, 1]], [[-7, -1, 1.01], [0.1, 6, 1]],
            [[-8.55, 5, 1.01], [1.44, 0.1, 1]],
            [[8.55, 4, 1.01], [1.44, 0.1, 1]]]

    obstacles = [[[-0.5, 2, 1.01], [3.5, 0.1, 1]],
                 [[4.5, -1, 1.01], [1.5, 0.1, 1]], [[-4, -2, 1.01],
                                                    [0.1, 2, 1]],
                 [[2.5, -4, 1.01], [1.5, 0.1, 1]]]

    for i in range(len(wall)):
        curr = wall[i]
        obj = Cube(curr[0], curr[1])
        s.import_object(obj)

    for i in range(len(obstacles)):
        curr = obstacles[i]
        obj = Cube(curr[0], curr[1])
        s.import_object(obj)

    config = parse_config(os.path.join(gibson2.root_path, '../test/test.yaml'))
    turtlebot1 = Turtlebot(config)
    turtlebot2 = Turtlebot(config)
    s.import_robot(turtlebot1)
    s.import_robot(turtlebot2)
    turtlebot1.set_position([6., -6., 0.])
    turtlebot2.set_position([-3., 4., 0.])

    for i in range(100):
        s.step()
    s.disconnect()
Exemple #23
0
def test_import_rbo_object():
    s = Simulator(mode='headless')
    try:
        scene = StadiumScene()
        s.import_scene(scene)

        obj = RBOObject('book')
        s.import_object(obj)

        obj2 = RBOObject('microwave')
        s.import_object(obj2)

        obj.set_position([0, 0, 2])
        obj2.set_position([0, 1, 2])

        obj3 = ArticulatedObject(
            os.path.join(gibson2.assets_path, 'models', 'scene_components',
                         'door.urdf'))
        s.import_object(obj3)

        for i in range(100):
            s.step()
    finally:
        s.disconnect()
def main():
    config = parse_config('../configs/turtlebot_demo.yaml')
    settings = MeshRendererSettings()
    s = Simulator(mode='gui',
                  image_width=256,
                  image_height=256,
                  rendering_settings=settings)

    scene = StaticIndoorScene('Rs',
                              build_graph=True,
                              pybullet_load_texture=True)
    s.import_scene(scene)
    turtlebot = Turtlebot(config)
    s.import_robot(turtlebot)

    for i in range(10000):
        with Profiler('Simulator step'):
            turtlebot.apply_action([0.1, -0.1])
            s.step()
            lidar = s.renderer.get_lidar_all()
            print(lidar.shape)
            # TODO: visualize lidar scan

    s.disconnect()
def render_physics_gifs(main_urdf_file_and_offset):
    step_per_sec = 100
    s = Simulator(mode='headless',
                  image_width=512,
                  image_height=512,
                  physics_timestep=1 / float(step_per_sec))

    root_dir = '/cvgl2/u/chengshu/ig_dataset_v5/objects'
    obj_count = 0
    for i, obj_class_dir in enumerate(sorted(os.listdir(root_dir))):
        obj_class = obj_class_dir
        # if obj_class not in SELECTED_CLASSES:
        #     continue
        obj_class_dir = os.path.join(root_dir, obj_class_dir)
        for obj_inst_dir in os.listdir(obj_class_dir):
            # if obj_inst_dir != '14402':
            #     continue

            imgs = []
            scene = EmptyScene()
            s.import_scene(scene, render_floor_plane=True)
            obj_inst_name = obj_inst_dir
            # urdf_path = obj_inst_name + '.urdf'
            obj_inst_dir = os.path.join(obj_class_dir, obj_inst_dir)
            urdf_path, offset = main_urdf_file_and_offset[obj_inst_dir]
            # urdf_path = os.path.join(obj_inst_dir, urdf_path)
            # print('urdf_path', urdf_path)

            obj = ArticulatedObject(urdf_path)
            s.import_object(obj)

            push_visual_marker = VisualMarker(radius=0.1)
            s.import_object(push_visual_marker)
            push_visual_marker.set_position([100, 100, 0.0])
            z = stable_z_on_aabb(obj.body_id, [[0, 0, 0], [0, 0, 0]])

            # offset is translation from the bounding box center to the base link frame origin
            # need to add another offset that is the translation from the base link frame origin to the inertial frame origin
            # p.resetBasePositionAndOrientation() sets the inertial frame origin instead of the base link frame origin
            # Assuming the bounding box center is at (0, 0, z) where z is half of the extent in z-direction
            base_link_to_inertial = p.getDynamicsInfo(obj.body_id, -1)[3]
            obj.set_position([
                offset[0] + base_link_to_inertial[0],
                offset[1] + base_link_to_inertial[1], z
            ])

            center, extent = get_center_extent(obj.body_id)
            # the bounding box center should be at (0, 0) on the xy plane and the bottom of the bounding box should touch the ground
            if not (np.linalg.norm(center[:2]) < 1e-3
                    and np.abs(center[2] - extent[2] / 2.0) < 1e-3):
                print('-' * 50)
                print('WARNING:', urdf_path, 'xy error',
                      np.linalg.norm(center[:2]), 'z error',
                      np.abs(center[2] - extent[2] / 2.0))

            height = extent[2]

            max_half_extent = max(extent[0], extent[1]) / 2.0
            px = max_half_extent * 2
            py = max_half_extent * 2
            pz = extent[2] * 1.2

            camera_pose = np.array([px, py, pz])
            # camera_pose = np.array([0.01, 0.01, 3])

            s.renderer.set_camera(camera_pose, [0, 0, 0], [0, 0, 1])
            # drop 1 second
            for _ in range(step_per_sec):
                s.step()
                frame = s.renderer.render(modes=('rgb'))
                imgs.append(
                    Image.fromarray(
                        (frame[0][:, :, :3] * 255).astype(np.uint8)))

            ray_start = [max_half_extent * 1.5, max_half_extent * 1.5, 0]
            ray_end = [-100.0, -100.0, 0]
            unit_force = np.array([-1.0, -1.0, 0.0])
            unit_force /= np.linalg.norm(unit_force)
            force_mag = 100.0

            ray_zs = [height * 0.5]
            valid_ray_z = False
            for trial in range(5):
                for ray_z in ray_zs:
                    ray_start[2] = ray_z
                    ray_end[2] = ray_z
                    res = p.rayTest(ray_start, ray_end)
                    if res[0][0] == obj.body_id:
                        valid_ray_z = True
                        break
                if valid_ray_z:
                    break
                increment = 1 / (2**(trial + 1))
                ray_zs = np.arange(increment / 2.0, 1.0, increment) * height

            # push 4 seconds
            for i in range(step_per_sec * 4):
                res = p.rayTest(ray_start, ray_end)
                object_id, link_id, _, hit_pos, hit_normal = res[0]
                if object_id != obj.body_id:
                    break
                push_visual_marker.set_position(hit_pos)
                p.applyExternalForce(object_id, link_id,
                                     unit_force * force_mag, hit_pos,
                                     p.WORLD_FRAME)
                s.step()
                # print(hit_pos)
                frame = s.renderer.render(modes=('rgb'))
                rgb = frame[0][:, :, :3]
                # add red border
                border_width = 10
                border_color = np.array([1.0, 0.0, 0.0])
                rgb[:border_width, :, :] = border_color
                rgb[-border_width:, :, :] = border_color
                rgb[:, :border_width, :] = border_color
                rgb[:, -border_width:, :] = border_color

                imgs.append(Image.fromarray((rgb * 255).astype(np.uint8)))

            gif_path = '{}/visualizations/{}_cm_physics_v3.gif'.format(
                obj_inst_dir, obj_inst_name)
            imgs = imgs[::4]
            imgs[0].save(gif_path,
                         save_all=True,
                         append_images=imgs[1:],
                         optimize=True,
                         duration=40,
                         loop=0)
            obj_count += 1
            # print(obj_count, gif_path, len(imgs), valid_ray_z, ray_z)
            print(obj_count, gif_path)
            s.reload()
Exemple #26
0
def main():
    config = parse_config('../configs/fetch_p2p_nav.yaml')
    s = Simulator(mode='gui', physics_timestep=1 / 240.0)
    scene = EmptyScene()
    s.import_scene(scene)
    fetch = Fetch(config)
    s.import_robot(fetch)

    robot_id = fetch.robot_ids[0]

    arm_joints = joints_from_names(robot_id, [
        'torso_lift_joint', 'shoulder_pan_joint', 'shoulder_lift_joint',
        'upperarm_roll_joint', 'elbow_flex_joint', 'forearm_roll_joint',
        'wrist_flex_joint', 'wrist_roll_joint'
    ])
    #finger_joints = joints_from_names(robot_id, ['l_gripper_finger_joint', 'r_gripper_finger_joint'])
    fetch.robot_body.reset_position([0, 0, 0])
    fetch.robot_body.reset_orientation([0, 0, 1, 0])
    x, y, z = fetch.get_end_effector_position()
    #set_joint_positions(robot_id, finger_joints, [0.04,0.04])
    print(x, y, z)

    visual_marker = p.createVisualShape(p.GEOM_SPHERE, radius=0.02)
    marker = p.createMultiBody(baseVisualShapeIndex=visual_marker)

    #max_limits = [0,0] + get_max_limits(robot_id, arm_joints) + [0.05,0.05]
    #min_limits = [0,0] + get_min_limits(robot_id, arm_joints) + [0,0]
    #rest_position = [0,0] + list(get_joint_positions(robot_id, arm_joints)) + [0.04,0.04]
    max_limits = [0, 0] + get_max_limits(robot_id, arm_joints)
    min_limits = [0, 0] + get_min_limits(robot_id, arm_joints)
    rest_position = [0, 0] + list(get_joint_positions(robot_id, arm_joints))
    joint_range = list(np.array(max_limits) - np.array(min_limits))
    joint_range = [item + 1 for item in joint_range]
    jd = [0.1 for item in joint_range]
    print(max_limits)
    print(min_limits)

    def accurateCalculateInverseKinematics(robotid, endEffectorId, targetPos,
                                           threshold, maxIter):
        sample_fn = get_sample_fn(robotid, arm_joints)
        set_joint_positions(robotid, arm_joints, sample_fn())
        it = 0
        while it < maxIter:
            jointPoses = p.calculateInverseKinematics(robotid,
                                                      endEffectorId,
                                                      targetPos,
                                                      lowerLimits=min_limits,
                                                      upperLimits=max_limits,
                                                      jointRanges=joint_range,
                                                      restPoses=rest_position,
                                                      jointDamping=jd)
            set_joint_positions(robotid, arm_joints, jointPoses[2:10])
            ls = p.getLinkState(robotid, endEffectorId)
            newPos = ls[4]

            dist = np.linalg.norm(np.array(targetPos) - np.array(newPos))
            if dist < threshold:
                break

            it += 1

        print("Num iter: " + str(it) + ", threshold: " + str(dist))
        return jointPoses

    while True:
        with Profiler("Simulation step"):
            fetch.robot_body.reset_position([0, 0, 0])
            fetch.robot_body.reset_orientation([0, 0, 1, 0])
            threshold = 0.01
            maxIter = 100
            joint_pos = accurateCalculateInverseKinematics(
                robot_id, fetch.parts['gripper_link'].body_part_index,
                [x, y, z], threshold, maxIter)[2:10]

            #set_joint_positions(robot_id, finger_joints, [0.04, 0.04])
            s.step()
            keys = p.getKeyboardEvents()
            for k, v in keys.items():
                if (k == p.B3G_RIGHT_ARROW and (v & p.KEY_IS_DOWN)):
                    x += 0.01
                if (k == p.B3G_LEFT_ARROW and (v & p.KEY_IS_DOWN)):
                    x -= 0.01
                if (k == p.B3G_UP_ARROW and (v & p.KEY_IS_DOWN)):
                    y += 0.01
                if (k == p.B3G_DOWN_ARROW and (v & p.KEY_IS_DOWN)):
                    y -= 0.01
                if (k == ord('z') and (v & p.KEY_IS_DOWN)):
                    z += 0.01
                if (k == ord('x') and (v & p.KEY_IS_DOWN)):
                    z -= 0.01
            p.resetBasePositionAndOrientation(marker, [x, y, z], [0, 0, 0, 1])

    s.disconnect()
Exemple #27
0
def main():
    config = parse_config(
        os.path.join(gibson2.example_config_path,
                     'turtlebot_demo.yaml'))  #robot configuration file path
    #    settings = MeshRendererSettings() #generating renderer settings object

    #generating simulator object
    #s = Simulator(mode='headless', #simulating without gui
    s = Simulator(
        mode='headless',  #simulating with gui
        #                  image_width=256, #robot camera pixel width
        #                  image_height=256, #robot camera pixel height
        #                  vertical_fov=40, #robot camera view angle (from floor to ceiling 40 degrees)
    )
    #rendering_settings=settings)

    #generating scene object
    scene = InteractiveIndoorScene(
        'Benevolence_1_int',  #scene name: Benevolence, floor number: 1, does it include interactive objects: yes (int). I pick Benevolence on purpose as it is the most memory friendly scene in the iGibson dataset. 
        build_graph=
        True,  #builds the connectivity graph over the given facedown traversibility map (floor plan)
        waypoint_resolution=
        0.1,  #radial distance between 2 consecutive waypoints (10 cm)
        pybullet_load_texture=True
    )  #do you want to include texture and material properties? (you need this for object interaction)

    s.import_ig_scene(scene)  #loading the scene object in the simulator object
    turtlebot = Turtlebot(config)  #generating the robot object
    s.import_robot(
        turtlebot)  #loading the robot object in the simulator object
    init_pos = turtlebot.get_position(
    )  #getting the initial position of the robot base [X:meters, Y:meters, Z:meters] (base: robot's main body. it may have links and the associated joints too. links and joints have positions and orientations as well.)
    init_or = turtlebot.get_rpy(
    )  #getting the initial Euler angles of the robot base [Roll: radians, Pitch: radians, Yaw: radians]

    #sampling random goal states in a desired room of the apartment
    np.random.seed(0)
    goal = scene.get_random_point_by_room_type('living_room')[
        1]  #sampling a random point in the living room

    rnd_path = scene.get_shortest_path(
        0, init_pos[0:2], goal[0:2], entire_path=True
    )[0]  #generate the "entire" a* path between the initial and goal nodes

    for i in range(len(rnd_path[0]) - 1):
        with Profiler(
                'Simulator step'
        ):  #iGibson simulation loop requieres this context manager

            rgb_camera = np.array(
                s.renderer.render_robot_cameras(modes='rgb')
            )  #probing RGB data, you can also probe rgbd or even optical flow if robot has that property in its config file (.yaml file)
            plt.imshow(rgb_camera[0, :, :, 3])  #calling sampled RGB data
            lidar = s.renderer.get_lidar_all()  #probing 360 degrees lidar data

            delta_pos = smt_path[:, i +
                                 1] - smt_path[:,
                                               i]  #direction vector between 2 consucutive waypoints
            delta_yaw = np.arctan2(
                delta_pos[1], delta_pos[0]
            )  #the yaw angle of the robot base while following the sampled bezier path
            delta_qua = e2q(
                init_or[0], init_or[1],
                delta_yaw)  #transforming robot base Euler angles to quaternion
            turtlebot.set_position_orientation([
                smt_path[0, i], smt_path[1, i], init_pos[2]
            ], delta_qua)  #setting the robot base position and the orientation
            s.step()  #proceed one step ahead in simulation time

    s.disconnect()
Exemple #28
0
class BaseEnv(gym.Env):
    '''
    Base Env class, follows OpenAI Gym interface
    Handles loading scene and robot
    Functions like reset and step are not implemented
    '''
    def __init__(self,
                 config_file,
                 scene_id=None,
                 mode='headless',
                 action_timestep=1 / 10.0,
                 physics_timestep=1 / 240.0,
                 render_to_tensor=False,
                 device_idx=0):
        """
        :param config_file: config_file path
        :param scene_id: override scene_id in config file
        :param mode: headless or gui mode
        :param action_timestep: environment executes action per action_timestep second
        :param physics_timestep: physics timestep for pybullet
        :param device_idx: device_idx: which GPU to run the simulation and rendering on
        """
        self.config = parse_config(config_file)
        if scene_id is not None:
            self.config['scene_id'] = scene_id

        self.mode = mode
        self.action_timestep = action_timestep
        self.physics_timestep = physics_timestep
        self.texture_randomization_freq = self.config.get(
            'texture_randomization_freq', None)
        self.object_randomization_freq = self.config.get(
            'object_randomization_freq', None)
        self.object_randomization_idx = 0
        self.num_object_randomization_idx = 10

        enable_shadow = self.config.get('enable_shadow', False)
        enable_pbr = self.config.get('enable_pbr', True)
        texture_scale = self.config.get('texture_scale', 1.0)

        settings = MeshRendererSettings(enable_shadow=enable_shadow,
                                        enable_pbr=enable_pbr,
                                        msaa=False,
                                        texture_scale=texture_scale)

        self.simulator = Simulator(
            mode=mode,
            physics_timestep=physics_timestep,
            render_timestep=action_timestep,
            image_width=self.config.get('image_width', 128),
            image_height=self.config.get('image_height', 128),
            vertical_fov=self.config.get('vertical_fov', 90),
            device_idx=device_idx,
            render_to_tensor=render_to_tensor,
            rendering_settings=settings)
        self.load()

    def reload(self, config_file):
        """
        Reload another config file
        Thhis allows one to change the configuration on the fly

        :param config_file: new config file path
        """
        self.config = parse_config(config_file)
        self.simulator.reload()
        self.load()

    def reload_model(self, scene_id):
        """
        Reload another scene model
        This allows one to change the scene on the fly

        :param scene_id: new scene_id
        """
        self.config['scene_id'] = scene_id
        self.simulator.reload()
        self.load()

    def reload_model_object_randomization(self):
        """
        Reload the same model, with the next object randomization random seed
        """
        if self.object_randomization_freq is None:
            return
        self.object_randomization_idx = (self.object_randomization_idx + 1) % \
            (self.num_object_randomization_idx)
        self.simulator.reload()
        self.load()

    def get_next_scene_random_seed(self):
        """
        Get the next scene random seed
        """
        if self.object_randomization_freq is None:
            return None
        return self.scene_random_seeds[self.scene_random_seed_idx]

    def load(self):
        """
        Load the scene and robot
        """
        if self.config['scene'] == 'empty':
            scene = EmptyScene()
            self.simulator.import_scene(scene,
                                        load_texture=self.config.get(
                                            'load_texture', True))
        elif self.config['scene'] == 'stadium':
            scene = StadiumScene()
            self.simulator.import_scene(scene,
                                        load_texture=self.config.get(
                                            'load_texture', True))
        elif self.config['scene'] == 'gibson':
            scene = StaticIndoorScene(
                self.config['scene_id'],
                waypoint_resolution=self.config.get('waypoint_resolution',
                                                    0.2),
                num_waypoints=self.config.get('num_waypoints', 10),
                build_graph=self.config.get('build_graph', False),
                trav_map_resolution=self.config.get('trav_map_resolution',
                                                    0.1),
                trav_map_erosion=self.config.get('trav_map_erosion', 2),
                pybullet_load_texture=self.config.get('pybullet_load_texture',
                                                      False),
            )
            self.simulator.import_scene(scene,
                                        load_texture=self.config.get(
                                            'load_texture', True))
        elif self.config['scene'] == 'igibson':
            scene = InteractiveIndoorScene(
                self.config['scene_id'],
                waypoint_resolution=self.config.get('waypoint_resolution',
                                                    0.2),
                num_waypoints=self.config.get('num_waypoints', 10),
                build_graph=self.config.get('build_graph', False),
                trav_map_resolution=self.config.get('trav_map_resolution',
                                                    0.1),
                trav_map_erosion=self.config.get('trav_map_erosion', 2),
                trav_map_type=self.config.get('trav_map_type', 'with_obj'),
                pybullet_load_texture=self.config.get('pybullet_load_texture',
                                                      False),
                texture_randomization=self.texture_randomization_freq
                is not None,
                object_randomization=self.object_randomization_freq
                is not None,
                object_randomization_idx=self.object_randomization_idx,
                should_open_all_doors=self.config.get('should_open_all_doors',
                                                      False),
                load_object_categories=self.config.get(
                    'load_object_categories', None),
                load_room_types=self.config.get('load_room_types', None),
                load_room_instances=self.config.get('load_room_instances',
                                                    None),
            )
            # TODO: Unify the function import_scene and take out of the if-else clauses
            first_n = self.config.get('_set_first_n_objects', -1)
            if first_n != -1:
                scene._set_first_n_objects(first_n)
            self.simulator.import_ig_scene(scene)

        if self.config['robot'] == 'Turtlebot':
            robot = Turtlebot(self.config)
        elif self.config['robot'] == 'Husky':
            robot = Husky(self.config)
        elif self.config['robot'] == 'Ant':
            robot = Ant(self.config)
        elif self.config['robot'] == 'Humanoid':
            robot = Humanoid(self.config)
        elif self.config['robot'] == 'JR2':
            robot = JR2(self.config)
        elif self.config['robot'] == 'JR2_Kinova':
            robot = JR2_Kinova(self.config)
        elif self.config['robot'] == 'Freight':
            robot = Freight(self.config)
        elif self.config['robot'] == 'Fetch':
            robot = Fetch(self.config)
        elif self.config['robot'] == 'Locobot':
            robot = Locobot(self.config)
        else:
            raise Exception('unknown robot type: {}'.format(
                self.config['robot']))

        self.scene = scene
        self.robots = [robot]
        for robot in self.robots:
            self.simulator.import_robot(robot)

    def clean(self):
        """
        Clean up
        """
        if self.simulator is not None:
            self.simulator.disconnect()

    def close(self):
        """
        Synonymous function with clean
        """
        self.clean()

    def simulator_step(self):
        """
        Step the simulation.
        This is different from environment step that returns the next
        observation, reward, done, info.
        """
        self.simulator.step()

    def step(self, action):
        """
        Overwritten by subclasses
        """
        return NotImplementedError()

    def reset(self):
        """
        Overwritten by subclasses
        """
        return NotImplementedError()

    def set_mode(self, mode):
        """
        Set simulator mode
        """
        self.simulator.mode = mode
Exemple #29
0
class ToyEnvInt(object):
    def __init__(self, robot='turtlebot', scene='Rs_int'):
        config = parse_config('../../configs/turtlebot_demo.yaml')
        hdr_texture = os.path.join(gibson2.ig_dataset_path, 'scenes',
                                   'background', 'probe_02.hdr')
        hdr_texture2 = os.path.join(gibson2.ig_dataset_path, 'scenes',
                                    'background', 'probe_03.hdr')
        light_modulation_map_filename = os.path.join(gibson2.ig_dataset_path,
                                                     'scenes', 'Rs_int',
                                                     'layout',
                                                     'floor_lighttype_0.png')
        background_texture = os.path.join(gibson2.ig_dataset_path, 'scenes',
                                          'background', 'urban_street_01.jpg')

        scene = InteractiveIndoorScene(scene,
                                       texture_randomization=False,
                                       object_randomization=False)
        #scene._set_first_n_objects(5)
        scene.open_all_doors()

        settings = MeshRendererSettings(
            env_texture_filename=hdr_texture,
            env_texture_filename2=hdr_texture2,
            env_texture_filename3=background_texture,
            light_modulation_map_filename=light_modulation_map_filename,
            enable_shadow=True,
            msaa=True,
            light_dimming_factor=1.0,
            optimized=True)

        self.s = Simulator(mode='headless',
                           image_width=400,
                           image_height=400,
                           rendering_settings=settings)
        self.s.import_ig_scene(scene)

        if robot == 'turtlebot':
            self.robot = Turtlebot(config)
        else:
            self.robot = Fetch(config)

        self.s.import_robot(self.robot)

        for _ in range(5):
            obj = YCBObject('003_cracker_box')
            self.s.import_object(obj)
            obj.set_position_orientation(
                np.random.uniform(low=0, high=2, size=3), [0, 0, 0, 1])
        print(self.s.renderer.instances)

    def step(self, a):
        action = np.zeros(self.robot.action_space.shape)
        if isinstance(self.robot, Turtlebot):
            action[0] = a[0]
            action[1] = a[1]
        else:
            action[1] = a[0]
            action[0] = a[1]

        self.robot.apply_action(action)
        self.s.step()
        frame = self.s.renderer.render_robot_cameras(modes=('rgb'))[0]
        return frame

    def close(self):
        self.s.disconnect()
Exemple #30
0
##################################################################################################################
##tried changing robot control to position and torque but failed,from the documentation it seems turtle bot only##
############################################supports joint velocity###############################################
##################################################################################################################
#robot.load()
#robot.set_position(position)
#robot.robot_specific_reset()
#robot.keep_still()
#print(robot.action_dim)
#print(robot.control)
############################################adding keyboard functionality#####################################
#print(p.getKeyboardEvents())
##############################################start the simulation############################################
for i in range(360):
    #p.stepSimulation()
    s.step()
    #time.sleep(1./360.)

#for i in range(1):
#action = np.random.uniform(-1, 1, robot.action_dim)
#print(action)
#action=np.array([0,0.5])
#turtlebot.apply_action(action)
#print(robot.get_angular_velocity())
#robot.move_forward(forward=0.5)
#p.stepSimulation()
#s.step()
#robot.keep_still()
#time.sleep(1./360.)
for i in range(1000):
    #with Profiler('Simulator step'):