Exemple #1
0
    def get_additional_states(self):
        """
        :return: non-perception observation, such as goal location
        """
        additional_states = self.global_to_local(self.target_pos)[:2]
        if self.goal_format == 'polar':
            additional_states = np.array(
                cartesian_to_polar(additional_states[0], additional_states[1]))

        # linear velocity along the x-axis
        linear_velocity = rotate_vector_3d(
            self.robots[0].get_linear_velocity(), *self.robots[0].get_rpy())[0]
        # angular velocity along the z-axis
        angular_velocity = rotate_vector_3d(
            self.robots[0].get_angular_velocity(),
            *self.robots[0].get_rpy())[2]
        additional_states = np.append(additional_states,
                                      [linear_velocity, angular_velocity])

        if self.config['task'] == 'reaching':
            end_effector_pos_local = self.global_to_local(
                self.robots[0].get_end_effector_position())
            additional_states = np.append(additional_states,
                                          end_effector_pos_local)

        assert additional_states.shape[0] == self.additional_states_dim, \
            'additional states dimension mismatch {} v.s. {}'.format(additional_states.shape[0], self.additional_states_dim)
        return additional_states
Exemple #2
0
    def get_goal(self):
        """
        :return: goal location
        """
        goal = []
        goal = self.global_to_local(self.target_pos)[:2]
        if self.goal_format == 'polar':
            goal = np.array(cartesian_to_polar(goal[0], goal[1]))

        goal = np.append(goal, self.target_pos[2:])

        assert goal.shape[0] == self.goal_dim, \
            'goal state dimension mismatch {} v.s. {}'.format(goal.shape[0], self.goal_dim)

        return goal
Exemple #3
0
    def get_additional_states(self):
        """
        :return: non-perception observation, such as goal location
        """
        additional_states = []
        additional_states = self.global_to_local(self.target_pos)[:2]
        if self.goal_format == 'polar':
            additional_states = np.array(cartesian_to_polar(additional_states[0], additional_states[1]))

        if self.config['task'] == 'reaching':
            additional_states = np.append(additional_states, self.target_pos[2:])

        #additional_states = []
        # linear velocity along the x-axis
        linear_velocity = rotate_vector_3d(self.robots[0].get_linear_velocity(),
                                           *self.robots[0].get_rpy())[0]
        # angular velocity along the z-axis
        angular_velocity = rotate_vector_3d(self.robots[0].get_angular_velocity(),
                                            *self.robots[0].get_rpy())[2]

        additional_states = np.append(additional_states, [linear_velocity, angular_velocity])

        if self.config['task'] == 'reaching':
            # End-effector
            end_effector_pos_local = self.global_to_local(self.robots[0].get_end_effector_position())
            additional_states = np.append(additional_states, end_effector_pos_local)

            # Height
            #additional_states = np.append(additional_states, self.target_pos[2:])

            # L2 distance between end-effector and goal
            #additional_states = np.append(additional_states, self.get_l2_potential())

            # Joint positions and velocities 
            self.robots[0].calc_state()
            additional_states = np.append(additional_states, np.sin(self.robots[0].joint_position[2:]))
            additional_states = np.append(additional_states, np.cos(self.robots[0].joint_position[2:]))
            additional_states = np.append(additional_states, self.robots[0].joint_velocity[2:])
            #additional_states = np.append(additional_states, self.robots[0].joint_torque)

        assert additional_states.shape[0] == self.additional_states_dim, \
            'additional states dimension mismatch {} v.s. {}'.format(additional_states.shape[0], self.additional_states_dim)

        return additional_states
Exemple #4
0
    def get_task_obs(self, env):
        """
        Get task-specific observation, including goal position, current velocities, etc.

        :param env: environment instance
        :return: task-specific observation
        """
        task_obs = self.global_to_local(env, self.target_pos)[:2]
        if self.goal_format == 'polar':
            task_obs = np.array(cartesian_to_polar(task_obs[0], task_obs[1]))

        # linear velocity along the x-axis
        linear_velocity = rotate_vector_3d(env.robots[0].get_linear_velocity(),
                                           *env.robots[0].get_rpy())[0]
        # angular velocity along the z-axis
        angular_velocity = rotate_vector_3d(
            env.robots[0].get_angular_velocity(), *env.robots[0].get_rpy())[2]
        task_obs = np.append(task_obs, [linear_velocity, angular_velocity])

        return task_obs