Exemple #1
0
    def _cmp_vector(self, vec1, vec2, reversed=False):
        "comparison of two vectors - dx, dy, dz, var_dx, var_dy, var_dz"
        if reversed:
            ddx = vec1.dx + vec2.dx
            ddy = vec1.dy + vec2.dy
            ddz = vec1.dz + vec2.dz
        else:
            ddx = vec1.dx - vec2.dx
            ddy = vec1.dy - vec2.dy
            ddz = vec1.dz - vec2.dz
        
        # variances
        var1 = vec1.var
        var2 = vec2.var
        var_ddx = var1[0] + var2[0]
        var_ddy = var1[1] + var2[1]
        var_ddz = var1[2] + var2[2]

        # covariances
        cov1 = vec1.cov
        cov2 = vec2.cov
        cov_xy = cov1[0] + cov2[0]
        cov_xz = cov1[1] + cov2[1]
        cov_yz = cov1[2] + cov2[2]

        #if excludeZero:
        #    if (ddx, ddy, ddz) == (0, 0, 0):
        #        return

        # append vector 
        vec = ObsVector(fromid=vec1.fromid, toid=vec1.toid,
                        dx=ddx, dy=ddy, dz=ddz)
        self._cluster.append_obs(vec)
        
        # extend covariance matrix and add values
        self._cluster.covmat.extend_dim(3)
        vec.var = (var_ddx, var_ddy, var_ddz)
        vec.cov = (cov_xy, cov_xz, cov_yz)
Exemple #2
0
    def _mean_vector(self, data):
        "returns mean of vector with same fromid and toid"
        
        # add vectors to list
        lvec = [] # helper list of vectors
        for c in data:
            for v in c:
                lvec.append(v)

        datamean = ObsClusterList() 
        dmcluster = ObsClusterVector(covmat=CovMat(dim=0, band=2))
        datamean.append_cluster(dmcluster) 
        # list of vector means and single vectors (without mean)

        cll_mean = ObsClusterList()
        cll_obs = ObsClusterList()
        cll_res = ObsClusterList()
        
        if len(lvec) <= 1:
            return # nothink to compare
        while len(lvec) > 1:
            # find vectors with same fromid and toid
            v1 = lvec.pop()
            fromid = v1.fromid
            toid = v1.toid
            lvecm = [v1] # list of vectors for mean
            lsign = [1.0] # list of signs: for revers vectors -1.0
            for v2 in lvec:
                if v2.fromid == fromid and v2.toid == toid:
                    lvecm.append(v2)
                    lvec.remove(v2)
                    lsign.append(1.0)
                    continue
                if self.revers and\
                v2.fromid == toid and v2.toid == fromid:
                    lvecm.append(v2)
                    lvec.remove(v2)
                    lsign.append(-1.0)

            # compute mean
            if float(len(lvecm)) == 1:
                # nothink to compute
                vec = lvecm[0]
                covmat = vec.covmat
                dmcluster.append_obs(vec)
                dmcluster.covmat.extend_dim(3)
                vec.covmat = covmat
                continue

            
            from numpy import mat, mean
            
            ll = [mat([i.dx, i.dy, i.dz])*sign for i,sign in zip(lvecm,lsign)] 
            # row vectors of observ.

            #lm = mean(ll, axis=0)
            #print "Mean  0:", lm
            #print "covmat0:", lvecm[0].covmat.mat

            # compute covariance matrix 
            # covariances between vectors not handled
            
            sil = [i.covmat.mat.I for i in lvecm] 
            # covariance matrice inverses inv(Sigma)
            
            sill = [si*l.T for si,l in zip(sil,ll)]
            # product inv(Sigma)*l
            
            cmm = sum(sil).I # covariance matrix of mean
            mn = cmm * sum(sill) # mean value
            #print "Mean  1:", mn
            #print "covmat1:", cmm
        
            # append clusters 
            cl_mean = ObsClusterVector(covmat=CovMat(dim=3, band=2))
            cl_obs  = ObsClusterVector(covmat=CovMat(dim=0, band=2))
            cl_res  = ObsClusterVector(covmat=None)
            cll_mean.append_cluster(cl_mean)
            cll_obs.append_cluster(cl_obs)
            cll_res.append_cluster(cl_res)
            
            # append vector mean
            vec1 = ObsVector(fromid=lvecm[0].fromid, toid=lvecm[0].toid,
                            dx=float(mn[0]), dy=float(mn[1]), dz=float(mn[2]))
            vec2 = ObsVector(fromid=lvecm[0].fromid, toid=lvecm[0].toid,
                            dx=float(mn[0]), dy=float(mn[1]), dz=float(mn[2]))
            # vec1 == vec2
            cl_mean.append_obs(vec1)
            dmcluster.append_obs(vec2)

            # set covmat of mean
            covmat = CovMat(dim=3, band=2)
            covmat.mat = cmm
            vec1.covmat = covmat
            dmcluster.covmat.extend_dim(3)
            vec2.covmat = covmat
            
            # append observations with covmat
            for v in lvecm:
                vcovmat = v.covmat
                cl_obs.append_obs(v)
                cl_obs.covmat.extend_dim(3)
                v.covmat = vcovmat

            # append residuals
            for l,v,s in zip(ll,lvecm,lsign):
                res = (mn - l.T) * s
                vec = ObsVector(fromid=v.fromid, toid=v.toid,
                                dx=float(res[0]), 
                                dy=float(res[1]),
                                dz=float(res[2]))
                cl_res.append_obs(vec)
        
        return datamean, cll_mean, cll_obs, cll_res
Exemple #3
0
        for v in self._obsList:
            v.tran_2d(coordSystem, pointList)
            #self._lastIndex -= 1 # retuce from 3d to 2d - one dimension


    def scale_cov_mat(self, factor):
        self.covmat.scale_(factor)


if __name__ == "__main__":

    from gizela.data.ObsVector import ObsVector
    from gizela.data.CovMat import CovMat

    v1 = ObsVector(fromid="A", toid="B", dx=100, dy=200, dz=300)
    v2 = ObsVector(fromid="B", toid="C", dx=400, dy=300, dz=200)


    cl = ObsClusterVector()
    cl.append_obs(v1)
    cl.append_obs(v2)

    print cl.make_gama_xml()
    print cl
    from gizela.data.obs_table import obs_vector_table
    cl.textTable = obs_vector_table()
    print cl
    
    cl.covmat = CovMat(6,5)
    #cl.covmat.stdev = (0.01, 0.02, 0.03, 0.04, 0.05, 0.06)