def test_glmmexpfam_qs_none(): nsamples = 10 random = RandomState(0) X = random.randn(nsamples, 5) K = linear_eye_cov().value() z = random.multivariate_normal(0.2 * ones(nsamples), K) ntri = random.randint(1, 30, nsamples) nsuc = zeros(nsamples, dtype=int) for (i, ni) in enumerate(ntri): nsuc[i] += sum(z[i] + 0.2 * random.randn(ni) > 0) ntri = ascontiguousarray(ntri) glmm = GLMMExpFam(nsuc, ("binomial", ntri), X, None) assert_allclose(glmm.lml(), -38.30173374439622, atol=ATOL, rtol=RTOL) glmm.fix("beta") glmm.fix("scale") glmm.fit(verbose=False) assert_allclose(glmm.lml(), -32.03927471370041, atol=ATOL, rtol=RTOL) glmm.unfix("beta") glmm.unfix("scale") glmm.fit(verbose=False) assert_allclose(glmm.lml(), -19.575736561760586, atol=ATOL, rtol=RTOL)
def test_glmmexpfam_optimize(): nsamples = 10 random = RandomState(0) X = random.randn(nsamples, 5) K = linear_eye_cov().value() z = random.multivariate_normal(0.2 * ones(nsamples), K) QS = economic_qs(K) ntri = random.randint(1, 30, nsamples) nsuc = zeros(nsamples, dtype=int) for (i, ni) in enumerate(ntri): nsuc[i] += sum(z[i] + 0.2 * random.randn(ni) > 0) ntri = ascontiguousarray(ntri) glmm = GLMMExpFam(nsuc, ("binomial", ntri), X, QS) assert_allclose(glmm.lml(), -29.102168129099287, atol=ATOL, rtol=RTOL) glmm.fix("beta") glmm.fix("scale") glmm.fit(verbose=False) assert_allclose(glmm.lml(), -27.635788105778012, atol=ATOL, rtol=RTOL) glmm.unfix("beta") glmm.unfix("scale") glmm.fit(verbose=False) assert_allclose(glmm.lml(), -19.68486269551159, atol=ATOL, rtol=RTOL)
def test_glmmexpfam_delta_one_zero(): random = RandomState(1) n = 30 X = random.randn(n, 6) K = dot(X, X.T) K /= K.diagonal().mean() QS = economic_qs(K) ntri = random.randint(1, 30, n) nsuc = [random.randint(0, i) for i in ntri] glmm = GLMMExpFam(nsuc, ("binomial", ntri), X, QS) glmm.beta = asarray([1.0, 0, 0.5, 0.1, 0.4, -0.2]) glmm.delta = 0 assert_allclose(glmm.lml(), -113.24570457063275) assert_allclose(glmm._check_grad(step=1e-4), 0, atol=1e-2) glmm.fit(verbose=False) assert_allclose(glmm.lml(), -98.21144899310399, atol=ATOL, rtol=RTOL) assert_allclose(glmm.delta, 0, atol=ATOL, rtol=RTOL) glmm.delta = 1 assert_allclose(glmm.lml(), -98.00058169240869, atol=ATOL, rtol=RTOL) assert_allclose(glmm._check_grad(step=1e-4), 0, atol=1e-1) glmm.fit(verbose=False) assert_allclose(glmm.lml(), -72.82680948264196, atol=ATOL, rtol=RTOL) assert_allclose(glmm.delta, 0.9999999850988439, atol=ATOL, rtol=RTOL)
def test_glmmexpfam_poisson(): from numpy import ones, stack, exp, zeros from numpy.random import RandomState from numpy_sugar.linalg import economic_qs from pandas import DataFrame random = RandomState(1) # sample size n = 30 # covariates offset = ones(n) * random.randn() age = random.randint(16, 75, n) M = stack((offset, age), axis=1) M = DataFrame(stack([offset, age], axis=1), columns=["offset", "age"]) M["sample"] = [f"sample{i}" for i in range(n)] M = M.set_index("sample") # genetic variants G = random.randn(n, 4) # sampling the phenotype alpha = random.randn(2) beta = random.randn(4) eps = random.randn(n) y = M @ alpha + G @ beta + eps # Whole genotype of each sample. X = random.randn(n, 50) # Estimate a kinship relationship between samples. X_ = (X - X.mean(0)) / X.std(0) / sqrt(X.shape[1]) K = X_ @ X_.T + eye(n) * 0.1 # Update the phenotype y += random.multivariate_normal(zeros(n), K) y = (y - y.mean()) / y.std() z = y.copy() y = random.poisson(exp(z)) M = M - M.mean(0) QS = economic_qs(K) glmm = GLMMExpFam(y, "poisson", M, QS) assert_allclose(glmm.lml(), -52.479557279193585) glmm.fit(verbose=False) assert_allclose(glmm.lml(), -34.09720756737648)
def test_glmmexpfam_precise(): nsamples = 10 random = RandomState(0) X = random.randn(nsamples, 5) K = linear_eye_cov().value() QS = economic_qs(K) ntri = random.randint(1, 30, nsamples) nsuc = [random.randint(0, i) for i in ntri] glmm = GLMMExpFam(nsuc, ["binomial", ntri], X, QS) glmm.beta = asarray([1.0, 0, 0.5, 0.1, 0.4]) glmm.scale = 1.0 assert_allclose(glmm.lml(), -44.74191041468836, atol=ATOL, rtol=RTOL) glmm.scale = 2.0 assert_allclose(glmm.lml(), -36.19907331929086, atol=ATOL, rtol=RTOL) glmm.scale = 3.0 assert_allclose(glmm.lml(), -33.02139830387104, atol=ATOL, rtol=RTOL) glmm.scale = 4.0 assert_allclose(glmm.lml(), -31.42553401678996, atol=ATOL, rtol=RTOL) glmm.scale = 5.0 assert_allclose(glmm.lml(), -30.507029479473243, atol=ATOL, rtol=RTOL) glmm.scale = 6.0 assert_allclose(glmm.lml(), -29.937569702301232, atol=ATOL, rtol=RTOL) glmm.delta = 0.1 assert_allclose(glmm.lml(), -30.09977907145003, atol=ATOL, rtol=RTOL) assert_allclose(glmm._check_grad(), 0, atol=1e-3, rtol=RTOL)
def test_glmmexpfam_optimize_low_rank(): nsamples = 10 random = RandomState(0) X = random.randn(nsamples, 5) K = dot(X, X.T) z = dot(X, 0.2 * random.randn(5)) QS = economic_qs(K) ntri = random.randint(1, 30, nsamples) nsuc = zeros(nsamples, dtype=int) for (i, ni) in enumerate(ntri): nsuc[i] += sum(z[i] + 0.2 * random.randn(ni) > 0) ntri = ascontiguousarray(ntri) glmm = GLMMExpFam(nsuc, ("binomial", ntri), X, QS) assert_allclose(glmm.lml(), -18.60476792256323, atol=ATOL, rtol=RTOL) glmm.fit(verbose=False) assert_allclose(glmm.lml(), -7.800621320491801, atol=ATOL, rtol=RTOL)
def test_glmmexpfam_bernoulli_probit_problematic(): random = RandomState(1) N = 30 G = random.randn(N, N + 50) y = bernoulli_sample(0.0, G, random_state=random) G = ascontiguousarray(G, dtype=float) _stdnorm(G, 0, out=G) G /= sqrt(G.shape[1]) QS = economic_qs_linear(G) S0 = QS[1] S0 /= S0.mean() X = ones((len(y), 1)) model = GLMMExpFam(y, "probit", X, QS=(QS[0], QS[1])) model.delta = 0 model.fix("delta") model.fit(verbose=False) assert_allclose(model.lml(), -20.725623168378615, atol=ATOL, rtol=RTOL) assert_allclose(model.delta, 0.0001220703125, atol=1e-3) assert_allclose(model.scale, 0.33022865011938707, atol=ATOL, rtol=RTOL) assert_allclose(model.beta, [-0.002617161564786044], atol=ATOL, rtol=RTOL) h20 = model.scale * (1 - model.delta) / (model.scale + 1) model.unfix("delta") model.delta = 0.5 model.scale = 1.0 model.fit(verbose=False) assert_allclose(model.lml(), -20.725623168378522, atol=ATOL, rtol=RTOL) assert_allclose(model.delta, 0.5017852859580029, atol=1e-3) assert_allclose(model.scale, 0.9928931515372, atol=ATOL, rtol=RTOL) assert_allclose(model.beta, [-0.003203427206253548], atol=ATOL, rtol=RTOL) h21 = model.scale * (1 - model.delta) / (model.scale + 1) assert_allclose(h20, h21, atol=ATOL, rtol=RTOL)
def test_glmmexpfam_poisson(): random = RandomState(1) # sample size n = 30 # covariates offset = ones(n) * random.randn() age = random.randint(16, 75, n) M = stack((offset, age), axis=1) # genetic variants G = random.randn(n, 4) # sampling the phenotype alpha = random.randn(2) beta = random.randn(4) eps = random.randn(n) y = M @ alpha + G @ beta + eps # Whole genotype of each sample. X = random.randn(n, 50) # Estimate a kinship relationship between samples. X_ = (X - X.mean(0)) / X.std(0) / sqrt(X.shape[1]) K = X_ @ X_.T + eye(n) * 0.1 # Update the phenotype y += random.multivariate_normal(zeros(n), K) y = (y - y.mean()) / y.std() z = y.copy() y = random.poisson(exp(z)) M = M - M.mean(0) QS = economic_qs(K) glmm = GLMMExpFam(y, "poisson", M, QS) assert_allclose(glmm.lml(), -52.479557279193585) glmm.fit(verbose=False) assert_allclose(glmm.lml(), -34.09720756737648)
def test_glmmexpfam_copy(): nsamples = 10 random = RandomState(0) X = random.randn(nsamples, 5) K = linear_eye_cov().value() z = random.multivariate_normal(0.2 * ones(nsamples), K) QS = economic_qs(K) ntri = random.randint(1, 30, nsamples) nsuc = zeros(nsamples, dtype=int) for (i, ni) in enumerate(ntri): nsuc[i] += sum(z[i] + 0.2 * random.randn(ni) > 0) ntri = ascontiguousarray(ntri) glmm0 = GLMMExpFam(nsuc, ("binomial", ntri), X, QS) assert_allclose(glmm0.lml(), -29.10216812909928, atol=ATOL, rtol=RTOL) glmm0.fit(verbose=False) v = -19.575736562427252 assert_allclose(glmm0.lml(), v) glmm1 = glmm0.copy() assert_allclose(glmm1.lml(), v) glmm1.scale = 0.92 assert_allclose(glmm0.lml(), v, atol=ATOL, rtol=RTOL) assert_allclose(glmm1.lml(), -30.832831740038056, atol=ATOL, rtol=RTOL) glmm0.fit(verbose=False) glmm1.fit(verbose=False) v = -19.575736562378573 assert_allclose(glmm0.lml(), v) assert_allclose(glmm1.lml(), v)
def test_glmmexpfam_scale_very_high(): nsamples = 10 random = RandomState(0) X = random.randn(nsamples, 5) K = linear_eye_cov().value() QS = economic_qs(K) ntri = random.randint(1, 30, nsamples) nsuc = [random.randint(0, i) for i in ntri] glmm = GLMMExpFam(nsuc, ("binomial", ntri), X, QS) glmm.beta = asarray([1.0, 0, 0.5, 0.1, 0.4]) glmm.scale = 30.0 assert_allclose(glmm.lml(), -29.632791380478736, atol=ATOL, rtol=RTOL) assert_allclose(glmm._check_grad(), 0, atol=1e-3)
def test_glmmexpfam_delta1(): nsamples = 10 random = RandomState(0) X = random.randn(nsamples, 5) K = linear_eye_cov().value() QS = economic_qs(K) ntri = random.randint(1, 30, nsamples) nsuc = [random.randint(0, i) for i in ntri] glmm = GLMMExpFam(nsuc, ("binomial", ntri), X, QS) glmm.beta = asarray([1.0, 0, 0.5, 0.1, 0.4]) glmm.delta = 1 assert_allclose(glmm.lml(), -47.09677870648636, atol=ATOL, rtol=RTOL) assert_allclose(glmm._check_grad(), 0, atol=1e-4)
def test_glmmexpfam_binomial_large_ntrials(): random = RandomState(0) n = 10 X = random.randn(n, 2) G = random.randn(n, 100) K = dot(G, G.T) ntrials = random.randint(1, 100000, n) z = dot(G, random.randn(100)) / sqrt(100) successes = zeros(len(ntrials), int) for i in range(len(ntrials)): for _ in range(ntrials[i]): successes[i] += int(z[i] + 0.1 * random.randn() > 0) QS = economic_qs(K) glmm = GLMMExpFam(successes, ("binomial", ntrials), X, QS) glmm.fit(verbose=False) assert_allclose(glmm.lml(), -43.067433588125446)
def test_glmmexpfam_bernoulli_probit_assure_delta_fixed(): random = RandomState(1) N = 10 G = random.randn(N, N + 50) y = bernoulli_sample(0.0, G, random_state=random) G = ascontiguousarray(G, dtype=float) _stdnorm(G, 0, out=G) G /= sqrt(G.shape[1]) QS = economic_qs_linear(G) S0 = QS[1] S0 /= S0.mean() X = ones((len(y), 1)) model = GLMMExpFam(y, "probit", X, QS=(QS[0], QS[1])) model.fit(verbose=False) assert_allclose(model.lml(), -6.108751595773174, rtol=RTOL) assert_allclose(model.delta, 1.4901161193847673e-08, atol=1e-5) assert_(model._isfixed("logitdelta"))
def test_glmmexpfam_bernoulli_problematic(): random = RandomState(1) N = 30 G = random.randn(N, N + 50) y = bernoulli_sample(0.0, G, random_state=random) G = ascontiguousarray(G, dtype=float) _stdnorm(G, 0, out=G) G /= sqrt(G.shape[1]) QS = economic_qs_linear(G) S0 = QS[1] S0 /= S0.mean() X = ones((len(y), 1)) model = GLMMExpFam(y, "bernoulli", X, QS=(QS[0], QS[1])) model.delta = 0 model.fix("delta") model.fit(verbose=False) assert_allclose(model.lml(), -20.727007958026853, atol=ATOL, rtol=RTOL) assert_allclose(model.delta, 0, atol=1e-3) assert_allclose(model.scale, 0.879915823030081, atol=ATOL, rtol=RTOL) assert_allclose(model.beta, [-0.00247856564728], atol=ATOL, rtol=RTOL)