def exercise_17(): # test for small molecule multi-sweep indexing, 3 sweeps with different values # of goniometer setting rotation (i.e. phi scans) data_dir = os.path.join(dials_regression, "dials-191") import glob pickle_paths = [ glob.glob(os.path.join(data_dir, "*SWEEP%i*_strong.pickle" % (i + 1)))[0] for i in range(3) ] sweep_paths = [ glob.glob(os.path.join(data_dir, "*SWEEP%i*_datablock.json" % (i + 1)))[0] for i in range(3) ] extra_args = ["filter_ice=False"] expected_unit_cell = uctbx.unit_cell( (9.440, 15.313, 17.126, 90.073, 90.106, 79.248)) expected_rmsds = (0.32, 0.34, 0.005) expected_hall_symbol = ' P 1' result = run_one_indexing(" ".join(pickle_paths), " ".join(sweep_paths), extra_args, expected_unit_cell, expected_rmsds, expected_hall_symbol) assert len(result.indexed_reflections) > 12000, len( result.indexed_reflections) # expect at least indexed 2000 reflections per experiment for i in range(3): assert (result.indexed_reflections['id'] == i).count(True) > 2000
def get_vimeo20k_instances(cfg, split, ext=".png"): """ return a list of frame sequences """ FRAME_SIZE = cfg.STPAN.FRAME_SIZE if split == 'train': dirpath = cfg.DATA.PATH_TO_TRAINING_SET all_sequences = [] videos_clips = find_subdir_leaves(dirpath) for path_2_video in videos_clips: frames = glob.glob(path_2_video + '/*' + ext) frames.sort() for i in range(0, len(frames) - FRAME_SIZE): all_sequences.append(frames[i:i + FRAME_SIZE]) return all_sequences else: if split == 'val': dirpath = cfg.DATA.PATH_TO_VAL_SET elif split == 'test': dirpath = cfg.DATA.PATH_TO_TEST_SET all_sequences = [] videos_clips = find_subdir_leaves(dirpath) for path_2_video in videos_clips: noisy_frames = glob.glob(path_2_video + '/noisy*' + ext) gt_frames = glob.glob(path_2_video + '/gt*' + ext) all_sequences.append((noisy_frames, gt_frames)) return all_sequences
def load_batch(self, batch_size=1, is_testing=False): data_type = "train" if not is_testing else "val" pathA =sorted(glob.glob('./datasets/%s/%s/A/*' % (self.dataset_name, data_type)), key=os.path.getmtime) pathB =sorted(glob.glob('./datasets/%s/%s/B/*' % (self.dataset_name, data_type)), key=os.path.getmtime) self.n_batches = int(len(pathA) / batch_size) for i in range(self.n_batches-1): batch = pathA[i*batch_size:(i+1)*batch_size] imgs_A = [] for img in batch: img_A = self.imread(img) img_A = scipy.misc.imresize(img_A, self.img_res) imgs_A.append(img_A) imgs_A = np.array(imgs_A)/127.5 - 1. batch = pathB[i*batch_size:(i+1)*batch_size] imgs_B = [] for img in batch: img_B = self.imread(img) #img_B = scipy.misc.imresize(img_B, self.img_res) img_B = cv2.resize(img_B.astype('uint8'),(self.img_res), interpolation=cv2.INTER_NEAREST) imgs_B.append(img_B) imgs_B = np.array(imgs_B)/127.5 - 1. yield imgs_A, imgs_B
def _scan(self): names_hr = sorted( glob.glob(os.path.join(self.dir_hr, '**', '*' + self.ext[0]))) names_lr = sorted( glob.glob(os.path.join(self.dir_lr, '**', '*' + self.ext[1]))) return names_hr, names_lr
def test(self): self.sess.run(self.init) test_files = glob.glob('./data/test/test_use/*.dcm') test_save_filepath = glob.glob('./data/test/test_save') print('resnet!!!!!!!!!!!!!!!!!!!!!!!!!!!!') # load testing input test_input = [] test_data = np.zeros((1, 512, 512, 1), dtype=np.single) print("[*] Loading test images ...") test_input = load_images(test_files) # list of array of different size #test_data = test_input if self.load(self.ckpt_dir): print(" [*] Load SUCCESS") else: print(" [!] Load failed...") psnr_sum = 0 for idx in xrange(len(test_files)): test_data = test_input[idx] #noisy_image = test_data[idx] predicted_noise = self.forward(test_input[idx]) print("forwarding successfully...") output_clean_image = test_data - predicted_noise #print(output_clean_image) psnr = cal_psnr(test_data, output_clean_image) print("cal_psnr") psnr_sum += psnr test_save_images(test_data, predicted_noise, output_clean_image, test_save_filepath, idx) avg_psnr = psnr_sum / len(test_files) print("--- Average PSNR %.2f ---" % avg_psnr)
def exercise_16(): # test for small molecule multi-sweep indexing, 4 sweeps with different values # of goniometer.fixed_rotation() data_dir = os.path.join(dials_regression, "indexing_test_data", "multi_sweep") import glob pickle_paths = [ glob.glob( os.path.join(data_dir, "SWEEP%i" % (i + 1), "index", "*_strong.pickle"))[0] for i in range(4) ] sweep_paths = [ glob.glob( os.path.join(data_dir, "SWEEP%i" % (i + 1), "index", "*_datablock_import.json"))[0] for i in range(4) ] extra_args = ["known_symmetry.space_group=I4", "filter_ice=False"] expected_unit_cell = uctbx.unit_cell( (7.310, 7.310, 6.820, 90.000, 90.000, 90.000)) expected_rmsds = (0.10, 0.7, 0.5) expected_hall_symbol = ' I 4' result = run_one_indexing(" ".join(pickle_paths), " ".join(sweep_paths), extra_args, expected_unit_cell, expected_rmsds, expected_hall_symbol) assert len(result.indexed_reflections) > 1250, len( result.indexed_reflections)
def fetch_training_data_files(data_path, modalities): training_data_files = list() for subject_dir in glob.glob(os.path.join(data_path,'*')):#os.path.join(os.path.dirname(__file__), "data", "preprocessed", "*", "*")): subject_files = list() for modality in modalities + ["*seg*"]: subject_files.append(glob.glob(os.path.join(subject_dir, '*'+modality+'*'))) training_data_files.append(tuple(subject_files)) return training_data_files
def test(self, args): """Test cyclegan""" init_op = tf.global_variables_initializer() self.sess.run(init_op) if args.which_direction == 'AtoB': #print('test set path', './datasets/'+ self.dataset_dir + '/testA'); #dir_names, sample_files = testing_files('./datasets/'+ self.dataset_dir + '/testA') #print('Number of direcotry', len(dir_names)); #print('Number of files', len(sample_files)); sample_files = glob.glob( './datasets/{}/*.*'.format(self.dataset_dir + '/testA')) elif args.which_direction == 'BtoA': sample_files = glob.glob( './datasets/{}/*.*'.format(self.dataset_dir + '/testB')) else: raise Exception('--which_direction must be AtoB or BtoA') if self.load(args.checkpoint_dir): print(" [*] Load SUCCESS") else: print(" [!] Load failed...") # write html for visual comparison index_path = os.path.join( args.test_dir, '{0}_index.html'.format(args.which_direction)) index = open(index_path, "w") index.write("<html><body><table><tr>") index.write("<th>name</th><th>input</th><th>output</th></tr>") out_var, in_var = ( self.testB, self.test_A) if args.which_direction == 'AtoB' else (self.testA, self.test_B) for sample_file in sample_files: print('Processing image: ' + sample_file) sample_image = [load_test_data(sample_file, args.fine_size)] sample_image = np.array(sample_image).astype(np.float32) #d_name, f_name = os.path.split(sample_file); #root_d, c_d = os.path.split(d_name); #saving_dir = args.test_dir+ '/'+ c_d+'/' #print('result direcotry', saving_dir) #if not os.path.exists(saving_dir): # os.mkdir(saving_dir); image_path = os.path.join( args.test_dir, '{0}_{1}'.format(args.which_direction, os.path.basename(sample_file))) fake_img = self.sess.run(out_var, feed_dict={in_var: sample_image}) save_images(fake_img, [1, 1], image_path) index.write("<td>%s</td>" % os.path.basename(image_path)) index.write("<td><img src='%s'></td>" % (sample_file if os.path.isabs(sample_file) else ('..' + os.path.sep + sample_file))) index.write("<td><img src='%s'></td>" % (image_path if os.path.isabs(image_path) else ('..' + os.path.sep + image_path))) index.write("</tr>") index.close()
def main(): """Set up paths to image and joint data, saves results. :param base_dir: folder containing LSP images and data :param out_dir: output folder :param use_interpenetration: boolean, if True enables the interpenetration term :param n_betas: number of shape coefficients considered during optimization :param flength: camera focal length (an estimate) :param pix_thsh: threshold (in pixel), if the distance between shoulder joints in 2D is lower than pix_thsh, the body orientation as ambiguous (so a fit is run on both the estimated one and its flip) :param use_neutral: boolean, if True enables uses the neutral gender SMPL model :param viz: boolean, if True enables visualization during optimization """ # Render degrees: List of degrees in azimuth to render the final fit. # Note that rendering many views can take a while. import glob import os seqPath = '/home/xiul/databag/dbfusion/record0' allImgs = glob.glob(os.path.join(seqPath, 'xiu/*.png')) allImgs.sort() allPoses = np.loadtxt( os.path.join(seqPath, 'pose_parameters_per_frame.txt')) allBetas = np.loadtxt(os.path.join(seqPath, 'shape_parameters.txt')) camK = np.loadtxt(os.path.join(seqPath, 'cam_params.txt'), delimiter=',') allTrans = allPoses[:, 3:6] allPose = np.hstack((allPoses[:, 0:3], allPoses[:, 6:])) model = load_model(MODEL_MALE_PATH) useIds = range(len(allImgs)) allJson = glob.glob('/home/xiul/databag/dbfusion/record0/openpose/*.json') allJson.sort() for idx in useIds[10::10]: tarIUV = cv2.imread(allImgs[idx]) tarIUV = cv2.resize(tarIUV, (1280, 720)) tarIUV = tarIUV[:, :, ::-1] tarIUV[tarIUV[:, :, 0] == 0, :] = 255 tarIUV = tarIUV.astype(np.float) tarIUV = tarIUV / 255.0 cJ2d, wJ2d = load_pose(allJson[idx]) run_single_fit(tarIUV, cJ2d, wJ2d, allPose[idx, 0:3], allTrans[idx, :], allPose[idx, 3:], model, camK, viz=True, ids=idx)
def main(): plt.ion() # interactive mode # data_provider = DataProvider() # # train_loader = data_provider(args.train_data, args.batch_size, backbone=None, phase='train', num_worker=4) # eval_loader = data_provider(args.val_data, args.batch_size, backbone=None, phase='val', num_worker=4) # # images, labels = next(iter(eval_loader)) # # plot_image_class(images[:36], labels[:36], index_class=index_class) dataset_path = '/media/alex/80CA308ECA308288/alex_dataset/ecological-assets' train_image_path = glob.glob( osp.join(dataset_path, 'suichang_round1_train_210120', '*.tif')) # train_mask_path = glob.glob(osp.join(dataset_path, 'suichang_round1_train_210120', '*.png')) test_image_path = glob.glob( osp.join(dataset_path, 'suichang_round1_test_partA_210120', '*.tif')) train_dataset = EcologicalDataset( image_path=train_image_path, transforms=get_transforms(size=256, mode='train'), album_aug=get_albu_transform(image_size=256), mode='train') test_dataset = EcologicalDataset(image_path=train_image_path, transforms=get_transforms(size=256, mode='test'), mode='test') train_loader = data.DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=4) test_loader = data.DataLoader(test_dataset, batch_size=16, shuffle=True, num_workers=4) # for image, mask in train_dataset: image, mask = train_dataset[150] image = tensor_to_numpy(img_tensor=image, mean_std=True) mask = visual_mask(mask_img=mask + 1) plt.figure(figsize=(16, 8)) plt.subplot(121) plt.imshow(mask, cmap='gray') plt.subplot(122) plt.imshow(image) plt.show() print('Done')
def import_images(path = 'prediction/input/framewise/*.jpg'): # Path where the image is stored path = 'C:\\Users\\revan\\JUPYTERRRRRRRRRRRRRRRRRR\\Iris\\Drowsiness\\input_training\\train\\c4\\img_803.jpg' manual_pics = glob.glob(path) manual_imgs = [] # Array for storing all the raw pictures manual_displays = [] for file in manual_pics: manual_display = get_cv2_image(file,640,480) manual_displays.append(manual_display) # For prediction manual = get_cv2_image(file, img_rows=224, img_cols=224, color_type=3) # For flipping the image #manual = img_flip_lr = cv2.flip(manual, 1) # Appending prediction image into manual_imgs manual_imgs.append(manual) # Changing into uint8 manual_imgs = np.array(manual_imgs, dtype=np.uint8) # Changing into uint8 manual_imgs = manual_imgs.reshape(-1,img_rows,img_cols,3) # Path where the image is stored path = 'prediction/input/framewise/*.jpg' j = 0 # Set of all pixtures in the path manual_pics = sorted(glob.glob(path), key=os.path.getmtime) # Array for storing all the pictures after preprocessing manual_imgs = [] # Array for storing all the raw pictures manual_displays = [] # Looping over all pictures in the path for file in manual_pics: # For displayingn the picture and writing over it manual_display = get_cv2_image(file,640,480) # For flipping the image # manual_display = img_flip_lr = cv2.flip(manual_display, 1) # Appending display image into manual_display manual_displays.append(manual_display) manual = get_cv2_image(file, img_rows=224, img_cols=224, color_type=3) manual_imgs.append(manual) j += 1 manual_imgs = np.array(manual_imgs, dtype=np.uint8) manual_imgs = manual_imgs.reshape(-1,img_rows,img_cols,3) return manual_imgs, manual_displays
def read_enrichment(self, enrichment_files, threshold=1): """ Reads current output of motif enrichment analysis to get gene targets. *Keyword arguments:* - enrichment_files -- One string, or a list of strings, representing enrichment file paths. - threshold -- P-value threshold for motif acceptance. """ if isinstance(enrichment_files, list): file_list = [ filename for pattern in enrichment_files for filename in glob.glob(npath(pattern)) ] else: file_list = glob.glob(npath(enrichment_files)) # reading networks for filename in file_list: # use last dir name as name for condition condition = os.path.dirname(filename) condition = condition.split("/")[-1] self.conditions.append(condition) network = {} f = open(filename, "r") # skip header next(f) for line in f: line = line.strip("\n") values = line.split("\t") motif = values[0] if motif in self.motifs_map: p_value = float(values[2]) genes = values[9].split(",") if threshold >= p_value: network[motif] = genes if motif in self.motifs_enrichment: self.motifs_enrichment[motif][condition] = p_value else: self.motifs_enrichment[motif] = {condition: p_value} else: print("motif not found: " + motif) self.networks[condition] = network f.close()
def grab_emulators (self, sza, vza, raa, \ verbose=True,emulator_home = "emus/"): import glob # Locate all available emulators... files = glob.glob("%s.npz" % emulator_home) if len(files) == 0: files = glob.glob("%s*.npz" % emulator_home) emulator_search_dict = {} for f in files: ff = f.split('/')[-1].split('.')[0] try: emulator_search_dict[ float(ff.split("_")[0]), \ float(ff.split("_")[2]), float(ff.split("_")[1]) - \ float(ff.split("_")[3])] = f except: emulator_search_dict[ \ float(ff.split("_")[1]), float(ff.split("_")[2]) , \ float(ff.split("_")[3])] = f # So we have a dictionary inddexed by SZA, # VZA and RAA and mapping to a filename emu_keys = np.array(emulator_search_dict.keys()) cemu_keys = np.cos(emu_keys * np.pi / 180.).T semu_keys = np.sin(emu_keys * np.pi / 180.).T cthis = np.cos(np.array([sza, vza, raa]) * np.pi / 180.) sthis = np.sin(np.array([sza, vza, raa]) * np.pi / 180.) # view vector v_xyzThis = np.array( [sthis[0] * cthis[2], sthis[0] * sthis[2], cthis[0]]) v_emu_keys = np.array([semu_keys[0]*cemu_keys[2],\ semu_keys[0]*semu_keys[2],cemu_keys[0]]) # sun vector s_xyzThis = np.array([sthis[1], 0. * sthis[0], cthis[1]]) s_emu_keys = np.array([semu_keys[1], 0. * semu_keys[1], cemu_keys[1]]) vdist = np.dot(v_emu_keys.T, v_xyzThis) sdist = np.dot(s_emu_keys.T, s_xyzThis) # closest emulation point emu_locs = np.argmax(vdist + sdist, axis=0) emulators = {} for i in xrange(len(sza)): the_emu_key = emu_keys[emu_locs[i]] k = the_emu_key emulators[(int(k[0]), int(k[1]), int(k[2]))] = \ gp_emulator.MultivariateEmulator \ ( dump=emulator_search_dict[(k[0], k[1],k[2])]) if verbose: print i,sza[i], vza[i], raa[i], \ k,emulator_search_dict[(k[0], k[1],k[2])] return emulators
def generate_CSV(image_npy_array_dir, heatmap_npy_array_dir, CSV_conf_path): with open(CSV_conf_path, 'wb') as fp: a = csv.writer(fp, dialect='excel') image_tiles = glob.glob(image_npy_array_dir + "/*") heatmap_tiles = glob.glob(heatmap_npy_array_dir + "/*") for img, hm in zip(image_tiles, heatmap_tiles): img_file_name = ntpath.basename(img) hm_file_name = ntpath.basename(hm) line = [img_file_name, hm_file_name] a.writerow(line)
def read_enrichment(self, enrichment_files, threshold=1): """ Reads current output of motif enrichment analysis to get gene targets. *Keyword arguments:* - enrichment_files -- One string, or a list of strings, representing enrichment file paths. - threshold -- P-value threshold for motif acceptance. """ if isinstance(enrichment_files, list): file_list = [filename for pattern in enrichment_files for filename in glob.glob(npath(pattern))] else: file_list = glob.glob(npath(enrichment_files)) # reading networks for filename in file_list: # use last dir name as name for condition condition = os.path.dirname(filename) condition = condition.split("/")[-1] self.conditions.append(condition) network = {} f = open(filename, "r") # skip header next(f) for line in f: line = line.strip("\n") values = line.split("\t") motif = values[0] if motif in self.motifs_map: p_value = float(values[2]) genes = values[9].split(",") if threshold >= p_value: network[motif] = genes if motif in self.motifs_enrichment: self.motifs_enrichment[motif][condition] = p_value else: self.motifs_enrichment[motif] = {condition: p_value} else: print("motif not found: " + motif) self.networks[condition] = network f.close()
def load_sis(train_path, test_path, mode): """ Load data for the semantic image segmentor """ image_data_train_x = [] image_data_test_x = [] image_data_train_y = [] image_data_test_y = [] training_xml = glob.glob(f'{train_path}*.xml')[0] testing_xml = glob.glob(f'{test_path}*.xml')[0] x_datasets = [image_data_train_x, image_data_test_x] y_datasets = [image_data_train_y, image_data_test_y] paths = [train_path, test_path] xml_paths = [training_xml, testing_xml] # check to make sure xml exists in both datasets if os.path.isfile(training_xml) and os.path.isfile(testing_xml): for i in range(len(x_datasets)): #raw images for image in sorted(glob.glob(f'{paths[i]}*.png')): img = Image.open(paths[i] + image) image_data_train_x.append(np.array(img, dtype='uint8')) x_datasets[i] = np.concatenate(x_datasets[i]) y_datasets[i] = np.zeros( (len(x_datasets[i]), config.RESOLUTION_CAPTURE_WIDTH, config.RESOLUTION_CAPTURE_HEIGHT, len( config.SIS_ENTITIES_SR)), dtype=np.uint8) #annotated ground truth #convert xml file from cvat to ground truth for y tree = ET.parse(xml_paths[i]) root = tree.getroot() index = 0 for image in root.findall('image'): for polygon in image.findall('polygon'): label = polygon.get('label') points = polygon.get('points').split(';') #process points into readable format for i in range(len(points)): points[i] = points[i].split(',') points = [[math.ceil(float(x)) for x in lst] for lst in points] image_data_train_y[index,:,:,config.SIS_ENTITIES_SR.index(label)] = \ create_polygon(image_data_train_y[index,:,:,config.SIS_ENTITIES_SR.index(label)],points) index += 1 else: assert 'Missing xml annotations for dataset!' return image_data_train_x, image_data_train_y, image_data_test_x, image_data_test_y
def __init__(self, **kwargs): self.root = root = work_path + 'yy.release/' assert osp.exists(root) num_pids = 30 dftl = [] for pid in range(num_pids): imps = glob.glob(self.root + f'gallery/{pid}/*') # png or jpg dft = pd.DataFrame({ 'imgs': imps, 'pids': pid * np.ones(len(imps), int), 'cids': np.arange(len(imps)) }) dftl.append(dft) df_ori_gallery = pd.concat(dftl, axis=0) dftl = [] for pid in range(num_pids): imps = glob.glob(self.root + f'query/{pid}/*') # png or jpg dft = pd.DataFrame({ 'imgs': imps, 'pids': pid * np.ones(len(imps), int), 'cids': np.arange(len(imps)) }) dftl.append(dft) df_ori_query = pd.concat(dftl, axis=0) np.random.seed(16) all_ind = np.random.permutation(df_ori_query.shape[0]) np.random.seed(int(time.time() * 100 % 2**31)) train_ind = all_ind[:df_ori_query.shape[0] * 7 // 10] test_ind = all_ind[df_ori_query.shape[0] * 7 // 10:] df_ori_train = df_ori_query.iloc[train_ind] df_final_train = pd.concat(( df_ori_gallery, df_ori_train, ), axis=0) df_ori_test = df_ori_query.iloc[test_ind] df_test = pd.concat((df_ori_gallery, df_ori_test), axis=0) self.gallery = df_test.to_records(index=False).tolist() # self.gallery = df_ori_gallery.to_records(index=False).tolist() self.query = df_ori_test.to_records(index=False).tolist() self.train = self.trainval = df_final_train.to_records( index=False).tolist() self.val = None self.num_train_pids = num_pids self.num_trainval_ids = num_pids self.num_val_ids = 0 self.num_query_pids = num_pids self.num_gallery_pids = num_pids self.images_dir = None
def get_test_dataset(self) -> tf.data.Dataset: map_func = partial(load_image_test, height=self.config.dataset.image_size, width=self.config.dataset.image_size) images_path=self.base_path+'val/out/*.jpg' labeles_path=os.path.join(self.base_path,'val','out','col','*.png') image_paths = glob.glob(images_path) label_map_paths = glob.glob(labeles_path) test_dataset = tf.data.Dataset.from_tensor_slices((image_paths, label_map_paths)) test_dataset = test_dataset.map(map_func) test_dataset = test_dataset.batch(self.global_batch_size) return self.strategy.experimental_distribute_dataset(test_dataset)
def __call__(self, path="."): try: return os.listdir(path) except OSError: candidates = glob.glob(path + "/") if len(candidates) == 0: candidates = glob.glob(path + "*/") if len(candidates) == 0: os.listdir(path) # let it raise an error if len(candidates) == 1: dir = candidates[0] return os.listdir(dir) else: raise OSError("[ls error] more than one directory matches")
def initDirs(): import pyfits,glob for f in FILTERS: #flat fdir = os.path.join(OUTPUTDIR, "flat", f) createDir(fdir) #object fdir = os.path.join(OUTPUTDIR, "object", f) createDir(fdir) for fitsfile in glob.glob("%s/*.fits" % IMGDIR): try: hdulist = pyfits.open(fitsfile) except IOError as e: print "I/O error({0}): {1}".format(e.errno, e.strerror) continue header = hdulist[0].header #in M37 IMAGETYP = object for all #objectType = header["IMAGETYP"] if(header["OBJECT"].startswith("flat")): objectType = "flat" else: objectType = "object" insfilter = header["INSFILTE"] if insfilter in FILTERS: shutil.copy(fitsfile, os.path.join(OUTPUTDIR, objectType, insfilter)) os.system("echo %s >> %s" % (os.path.basename(fitsfile), os.path.join(OUTPUTDIR, objectType, insfilter, "list" )))
def generateAccuracies(): global DIR global NUMBER_OF_GENRES N = 10 g = glob.glob(DIR + '/*.csv') shuffle(g) DATA_LENGTH = len(g)/N songAccuracies = [0]*NUMBER_OF_GENRES segmentAccuracies = [0]*NUMBER_OF_GENRES for i in xrange(N): startIndex = i*DATA_LENGTH endIndex = len(g) if i == N else (i+1)*DATA_LENGTH (songAccuracyIncr, segmentAccuracyIncr) = classifySegments(g[:startIndex] + g[endIndex:], g[startIndex:endIndex]) songAccuracies = [songAccuracies[i] + songAccuracyIncr[i] for i in xrange(NUMBER_OF_GENRES)] segmentAccuracies = [segmentAccuracies[i] + segmentAccuracyIncr[i] for i in xrange(NUMBER_OF_GENRES)] songAccuracies = [x/N for x in songAccuracies] segmentAccuracies = [x/N for x in segmentAccuracies] print('|'*100) for k in GENRE_DICT: i = GENRE_DICT[k] print('Cross-Validated song classification accuracy for %s: %5.2f%%' % (k, 100.0*songAccuracies[i])) print('Cross-Validated segment classification accuracy for %s: %5.2f%%' % (k, 100.0*segmentAccuracies[i])) print('|'*100)
def item_candidates(self, item, artist, album): dir = path.dirname(item.path) cues = glob.glob(path.join(dir, "*.cue")) if not cues: return if len(cues) > 1: self._log.info(u"Found multiple cue files doing nothing: {0}", map(displayable_path, cues)) cue_file = cues[0] self._log.info("Found {} for {}", displayable_path(cue_file), item) try: # careful: will ask for input in case of conflicts command_output(['shnsplit', '-f', cue_file, item.path]) except (subprocess.CalledProcessError, OSError): self._log.exception(u'shnsplit execution failed') return tracks = glob(path.join(dir, "*.wav")) self._log.info("Generated {0} tracks", len(tracks)) for t in tracks: title = "dunno lol" track_id = "wtf" index = int(path.basename(t)[len("split-track"):-len(".wav")]) yield TrackInfo(title, track_id, index=index, artist=artist)
def load_checkpoint_model(checkpoint_path): ''' Load the last checkpoint file ''' import glob import os glob_pattern = os.path.join(checkpoint_path, '*.h5') print('glob pattern {}'.format(glob_pattern)) list_of_checkpoint_files = glob.glob(glob_pattern) print('List of checkpoint files {}'.format(list_of_checkpoint_files)) latest_checkpoint_file = max(list_of_checkpoint_files) print('Latest checkpoint file {}'.format(latest_checkpoint_file)) initial_epoch_number_str = latest_checkpoint_file.rsplit( '_', 1)[-1].split('.h5')[0] initial_epoch_number = int(initial_epoch_number_str) loaded_model = TFDistilBertForSequenceClassification.from_pretrained( latest_checkpoint_file, config=config) print('loaded_model {}'.format(loaded_model)) print('initial_epoch_number {}'.format(initial_epoch_number)) return loaded_model, initial_epoch_number
def clean_images(pattern): from skimage.io import imread for filename in glob.glob(pattern): try: imread(filename) except Exception: os.remove(filename)
def readlist(listfile): import string, os, sys, re, glob if '*' in listfile: imglist = glob.glob(listfile) elif ',' in listfile: imglist = string.split(listfile, sep=',') else: try: hdulist = fits.open(listfile) except: hdulist = [] if hdulist: imglist = [listfile] else: try: ff = open(listfile, 'r') files = ff.readlines() ff.close() imglist = [] for ff in files: ff = re.sub(' ', '', ff) if not ff == '\n' and ff[0] != '#': ff = re.sub('\n', '', ff) try: hdulist = fits.open(ff) imglist.append(ff) except Exception as e: print 'problem reading header of', ff print e except: sys.exit('\n##### Error ###\n file ' + str(listfile) + ' do not exist\n') if len(imglist) == 0: sys.exit('\n##### Error ###\nIf "'+str(listfile)\ +'" is an image, it is corrupted \n or is not a list of image\n') return imglist
def find_data_files(srcdir, *wildcards, **kw): # get a list of all files under the srcdir matching wildcards, # returned in a format to be used for install_data ## A list of partials within a filename that would disqualify it ## from appearing in the tarball. badnames = ["jquery", "ui-lightness"] def walk_helper(arg, dirname, files): names = [] lst, wildcards = arg for wc in wildcards: wc_name = opj(dirname, wc) for f in files: filename = opj(dirname, f) # if ".pyc" not in filename: ## This hairy looking line excludes the filename ## if any part of one of badnames is in it: if not any(bad in filename for bad in badnames): if fnmatch.fnmatch(filename, wc_name) and not os.path.isdir(filename): print(filename) names.append(filename) if names: lst.append((dirname, names)) file_list = [] recursive = kw.get("recursive", True) if recursive: os.path.walk(srcdir, walk_helper, (file_list, wildcards)) else: walk_helper((file_list, wildcards), srcdir, [os.path.basename(f) for f in glob.glob(opj(srcdir, "*"))]) return file_list
def get_varlist(self, pos=False, particle=False): """Get a list of all existing VAR# file names. pos = False: give full list pos = 'last'/'first': give latest/first var file pos = 'lastXXX' / 'firstXXX' give last/first XXX varfiles pos = list of numbers: give varfiles at this positions particle = True: return PVAR- instead of VAR-list""" import glob from os.path import join as join from os.path import basename from pencilnew.math import natural_sort key = 'VAR' if particle == True: key = 'PVAR' varlist = natural_sort([ basename(i) for i in glob.glob(join(self.data_dir, 'proc0') + '/' + key + '*') ]) #if particle: varlist = ['P'+i for i in varlist] if pos == False: return varlist if pos == 'first': return [varlist[0]] if pos == 'last': return [varlist[-1]] if pos.startswith('last'): return varlist[-int(pos[4:]):] if pos.startswith('first'): return varlist[:int(pos[4:])] if type(pos) == type([]): if pos[0].startswith('VAR'): pos = [i[3:] for i in pos] if pos[0].startswith('PVAR'): pos = [i[3:] for i in pos] return [varlist[int(i)] for i in pos] return varlist
def drop(choreo_id): for path in [F_ORG, F_SLICE]: try: for i in glob.glob("{}.*".format(path + choreo_id)): os.remove(i) except: pass if os.path.isdir(F_SLICE + choreo_id): os.rmdir(F_SLICE + choreo_id) try: Initializer.choreo_metainfo_list.remove(choreo_id) except: pass # youtube-dl의 archive file reformat read = TxtReader().read("/home/jihee/choleor_media/audio/archive.txt") try: read.remove("youtube {}\n".format(choreo_id)) except: pass TxtWriter().write("/home/jihee/choleor_media/audio/archive.txt", read) # self.audio_meta_list.remove(audio_id) # print(self.audio_meta_list) # if __name__ == '__main__': # Initializer().drop("h5jz8xdpR0M")
def listfiles(folder, extension='*.tif', full=False): ''' DAH PRA MELHORAR. muda esse *.tif para tif FAZ ALGUMA COISA pra n ter que botar a / no final do folder ALGUM IF, SEI LAH Lista os arquivos de extensão escolhida para a pasta escolhida. A lista é ordenada e os os valores repetidos são eliminados. Extensão default = '*.tif' full=False, se for True, dá o endereço completo. ''' listname = [] import glob for j in glob.glob(folder + extension): if full == True: listname.append(j) else: b = j.split('/') c = b[-1] listname.append(c) listname.sort() listname = [ii for n, ii in enumerate(listname) if ii not in listname[:n]] return listname
def send_documents_folder(self, folder: str, config: str, server: str = "") -> list: if server == "": if self.server == "": raise Exception('No server address provided') else: server = self.server responses = [] os.chdir(folder) files = [glob.glob(e) for e in self.__supported_input_files()] files_flat = list(chain.from_iterable(files)) for file in files_flat: packet = { 'file': (file, open(file, 'rb'), 'application/pdf'), 'config': (config, open(config, 'rb'), 'application/json'), } r = requests.post('http://' + server + '/api/v1/document', files=packet) responses.append({ 'file': file, 'config': config, 'status_code': r.status_code, 'server_response': r.text }) return responses
def readlist(listfile): import string,os,sys,re,glob if '*' in listfile: imglist=glob.glob(listfile) elif ',' in listfile: imglist = string.split(listfile,sep=',') else: try: hdulist= fits.open(listfile) except: hdulist=[] if hdulist: imglist = [listfile] else: try: ff = open(listfile,'r') files = ff.readlines() ff.close() imglist = [] for ff in files: ff=re.sub(' ','',ff) if not ff=='\n' and ff[0]!='#': ff=re.sub('\n','',ff) try: hdulist= fits.open(ff) imglist.append(ff) except Exception as e: print 'problem reading header of', ff print e except: sys.exit('\n##### Error ###\n file '+str(listfile)+' do not exist\n') if len(imglist)==0: sys.exit('\n##### Error ###\nIf "'+str(listfile)\ +'" is an image, it is corrupted \n or is not a list of image\n') return imglist
def get_varlist(self, pos=False, particle=False): """Get a list of all existing VAR# file names. pos = False: give full list pos = 'last'/'first': give latest/first var file pos = 'lastXXX' / 'firstXXX' give last/first XXX varfiles pos = list of numbers: give varfiles at this positions particle = True: return PVAR- instead of VAR-list""" import glob from os.path import join as join from os.path import basename from pencilnew.math import natural_sort key = 'VAR' if particle == True: key = 'PVAR' varlist = natural_sort([basename(i) for i in glob.glob(join(self.datadir, 'proc0')+'/'+key+'*')]) #if particle: varlist = ['P'+i for i in varlist] if pos == False: return varlist if pos == 'first': return [varlist[0]] if pos == 'last': return [varlist[-1]] if pos.startswith('last'): return varlist[-int(pos[4:]):] if pos.startswith('first'): return varlist[:int(pos[4:])] if type(pos) == type([]): if pos[0].startswith('VAR'): pos = [i[3:] for i in pos] if pos[0].startswith('PVAR'): pos = [i[3:] for i in pos] return [varlist[int(i)] for i in pos] return varlist
def __init__(self, sess, input_height=108, input_width=108, crop=True, output_height=64, output_width=64, gf_dim=64, df_dim=64, c_dim=3, dataset_name='lsun', input_fname_pattern='*.webp'): self.sess = sess self.crop = crop self.input_height = input_height self.input_width = input_width self.output_height = output_height self.output_width = output_width self.gf_dim = gf_dim self.df_dim = df_dim self.c_dim = c_dim self.dataset_name = dataset_name self.input_fname_pattern = input_fname_pattern self.data = glob.glob( os.path.join(IMAGE_PATH, self.input_fname_pattern)) self.checkpoint_dir = LOGDIR
def test_batch_h5(FLAGS): """ test all the h5 weights files in the model_dir """ file_paths = glob.glob(os.path.join(FLAGS.eval_weights_path, '*.h5')) for file_path in file_paths: test_single_h5(FLAGS, file_path)
def get_path_completions(self, text, line, begidx, endidx): ''' Get completions for paths ''' import os from os.path import isdir import glob def _append_slash_if_dir(p): if p and isdir(p) and p[-1] != os.sep: return p + os.sep else: return p before_arg = line.rfind(" ", 0, begidx) if before_arg == -1: return # arg not found fixed = line[before_arg + 1:begidx] # fixed portion of the arg arg = line[before_arg + 1:endidx] pattern = arg + '*' completions = [] for path in glob.glob(pattern): path = _append_slash_if_dir(path) completions.append(path.replace(fixed, "", 1)) return completions
def makedaypage(day,month,year,station): ''' Make daily page for one station and copy plots to desired directory ''' import datetime,os,glob,shutil doy=datetime.date(year,month,day).strftime('%j') daypage='/var/www/daypages/mainday.html' daydir='/var/www/daypages/'+str(year)+doy+'/' stationpage=daydir+station+'.html' plotdir='/home/sopac/GM/plots/'+str(year)+doy+'/' #Make directory for webpage try: os.mkdir(daydir) except: pass #Read in template web page and replace patterns s = open(daypage).read() #station name s = s.replace('Station ####', 'Station '+station) #date s = s.replace('YYYY/MM/DD', str(year)+'/'+str(month)+'/'+str(day)) #name of plot files s = s.replace('SSSS.', station+'.') #save as new page f = open(stationpage, 'w') f.write(s) f.close() #Now station plots to this dir plotlist=glob.glob(plotdir+station+'*') for k in range(len(plotlist)): shutil.copy(plotlist[k], daydir)
def load_files_in_dir(directory: str, suffix: str = ''): """Search for all files in sample_directory (optionally) with suffix sample_suffix an return them as pandas dataframe Parameters ------- directory : str Directory to search for files in suffix : str If a string is provided as sample_suffix, the file names without this suffix will be ignored Returns ------- : pd.DataFrame Pandas dataframe with base filenames (=filenames without path or suffix) as keys and full filenames as values; Dataframe is sorted by full filenames; """ from os import path import glob.glob import pandas as pd sample_pattern = "**/*{}".format(suffix) # Collect files in path, sort them by name, and store them into dictionary samples = glob.glob(path.join(directory, sample_pattern)) samples.sort() # Extract base filenames without path or suffix and store them as keys for the pandas dataframe keys = [path.basename(file)[:-len(suffix)] for file in samples] # Store in data frame for easy indexing and fast key->value access samples = pd.DataFrame(index=keys, data=samples) return samples
def run(self): import os import glob from PyQt4.uic import compileUi for infile in glob.glob(os.path.join('glue', 'qt', 'ui', '*.ui')): print("Compiling " + infile) directory, filename = os.path.split(infile) outfile = os.path.join(directory, filename.replace('.ui', '.py')) compileUi(infile, open(outfile, 'wb')) import sys import subprocess print("Compiling glue/qt/glue.qrc") if sys.version_info[0] == 2: option = '-py2' else: option = '-py3' try: subprocess.call([self.pyrcc4, option, 'glue/qt/glue.qrc', '-o', 'glue/qt/glue_qt_resources.py']) except OSError: print("pyrcc4 command failed - make sure that pyrcc4 " "is in your $PATH, or specify a custom command with " "--pyrcc4=command")
def chooseFile(path,filt='*.*',selection=None): import glob flist = glob.glob(path+filt) print flist err = True while err: idx = 0 for f in flist: print '[%d]: %s'%(idx,f) idx = idx + 1 print '[%s]: quit'%'q' if selection==None: choice = raw_input('Please choose one of the files above: ') if choice.lower()=='q': sys.exit('User quit') else: try: out = flist[int(choice)] return out except IndexError: print 'Choice out of range.' except ValueError: print 'Invalid choice.' else: print 'File %d selected in function call'%selection try: out = flist[selection] return out except IndexError: print 'Selection out of range.' sys.exit() except ValueError: print 'Invalid selection.' sys.exit()
def find_data_files(srcdir, *wildcards, **kw): # get a list of all files under the srcdir matching wildcards, # returned in a format to be used for install_data def walk_helper(arg, dirname, files): if '.svn' in dirname: return names = [] lst, wildcards = arg for wc in wildcards: wc_name = opj(dirname, wc) for f in files: filename = opj(dirname, f) if fnmatch.fnmatch(filename, wc_name) and not os.path.isdir(filename): names.append(filename) if names: lst.append( (os.path.join(target, dirname), names ) ) file_list = [] recursive = kw.get('recursive', True) target = kw.get('target', '') if recursive: os.path.walk(srcdir, walk_helper, (file_list, wildcards)) else: walk_helper((file_list, wildcards), srcdir, [os.path.basename(f) for f in glob.glob(opj(srcdir, '*'))]) return file_list
def get_path_completions(self, text, line, begidx, endidx): ''' Get completions for paths ''' import os from os.path import isdir import glob def _append_slash_if_dir(p): if p and isdir(p) and p[-1] != os.sep: return p + os.sep else: return p before_arg = line.rfind(" ", 0, begidx) if before_arg == -1: return # arg not found fixed = line[before_arg+1:begidx] # fixed portion of the arg arg = line[before_arg+1:endidx] pattern = arg + '*' completions = [] for path in glob.glob(pattern): path = _append_slash_if_dir(path) completions.append(path.replace(fixed, "", 1)) return completions
def get_data_files(srcdir, *wildcards, **kw): def walk_helper(arg, dirname, files): if '.git' in dirname: return names = [] lst, wildcards = arg for wc in wildcards: wc_name = opj(dirname, wc) for f in files: filename = opj(dirname, f) if fnmatch.fnmatch(filename, wc_name) and not os.path.isdir(filename): names.append(filename) if names: lst.append( (dirname, names ) ) file_list = [] recursive = kw.get('recursive', True) if recursive: os.path.walk(srcdir, walk_helper, (file_list, wildcards)) else: walk_helper((file_list, wildcards), srcdir, [os.path.basename(f) for f in glob.glob(opj(srcdir, '*'))]) return file_list
def __init__(self, sess, config, model): print ('{:=^120}'.format(' Building MidiNet ')) self.config = config self.sess = sess # create global step variable and increment op self.global_step = tf.Variable(0, name='global_step', trainable=False) self.global_step_increment = tf.assign(self.global_step, self.global_step+1) # create generator (G) self.model = model self.summaries = tf.get_collection(tf.GraphKeys.SUMMARIES) self.summary = tf.summary.merge(self.summaries) self.summary_image = tf.summary.merge([s for s in self.summaries if '/prediction/' in s.name]) self.model.get_model_info(quiet=False) """ Saver """ self.saver = tf.train.Saver() self.saver_g = tf.train.Saver(self.model.g_vars, max_to_keep=30) self.saver_d = tf.train.Saver(self.model.d_vars, max_to_keep=30) self.saver_dict = {'midinet': self.saver, 'G':self.saver_g, 'D':self.saver_d} print( '{:=^120}'.format('Done!')) print('*initializing variables...') # init metrics amd loss collection self.metrics = Metrics(eval_map=self.config.eval_map, inter_pair=self.config.inter_pair, drum_filter=self.config.drum_filter, scale_mask=self.config.scale_mask, track_names=self.config.track_names) tf.global_variables_initializer().run() self.dir_ckpt = os.path.join(self.config.exp_name, 'checkpoint') self.dir_sample = os.path.join(self.config.exp_name, 'samples') self.dir_log = os.path.join(self.config.exp_name, 'logs') if not os.path.exists(self.dir_ckpt): os.makedirs(self.dir_ckpt) if not os.path.exists(self.dir_sample): os.makedirs(self.dir_sample) if not os.path.exists(self.dir_log): os.makedirs(self.dir_log) path_src = os.path.join(self.dir_log, 'src') if not os.path.exists(path_src): os.makedirs(path_src) for file_path in glob.glob("./*.py"): copyfile(file_path, os.path.join(path_src, os.path.basename(file_path)))
def regpath(subject_id, fpath): import os, glob fpath = fpath % subject_id gpath = glob.glob(fpath) if len(gpath) == 0: raise Exception("Could not find reg file %s" % fpath) elif len(gpath) > 1: raise Exception("Too many files found for reg file '%s'" % fpath) return gpath[0]
def display_image(img,frame,_z1,_z2,scale,_xcen=0.5,_ycen=0.5,_xsize=1,_ysize=1,_erase='yes'): goon='True' import glob, subprocess, os, time ds9 = subprocess.Popen("ps -U {:d} u | grep -v grep | grep ds9".format(os.getuid()),shell=True,stdout=subprocess.PIPE).stdout.readlines() if len(ds9)== 0 : subproc = subprocess.Popen('ds9',shell=True) time.sleep(3) if glob.glob(img): from pyraf import iraf iraf.images(_doprint=0) iraf.tv(_doprint=0) import string,os if _z2: try: sss=iraf.display(img + '[0]', frame, xcen=_xcen, ycen=_ycen, xsize=_xsize, ysize=_ysize, erase=_erase,\ fill='yes', zscale='no', zrange='no', z1=_z1, z2=_z2,Stdout=1) except: print '' print '### ERROR: PROBLEM OPENING DS9' print '' goon='False' else: try: sss=iraf.display(img + '[0]', frame, xcen=_xcen, ycen=_ycen, xsize=_xsize, ysize=_ysize, erase=_erase, fill='yes', Stdout=1) except: print '' print '### ERROR: PROBLEM OPENING DS9' print '' goon=False if scale and goon: answ0 = raw_input('>>> Cuts OK ? [y/n] ? [y] ') if not answ0: answ0='y' elif answ0=='no' or answ0=='NO': answ0='n' while answ0=='n': _z11=float(string.split(string.split(sss[0])[0],'=')[1]) _z22=float(string.split(string.split(sss[0])[1],'=')[1]) z11 = raw_input('>>> z1 = ? ['+str(_z11)+'] ? ') z22 = raw_input('>>> z2 = ? ['+str(_z22)+'] ? ') if not z11: z11=_z11 else: z11=float(z11) if not z22: z22=_z22 else: z22=float(z22) print z11,z22 sss=iraf.display(img + '[0]',frame,fill='yes', xcen=_xcen, ycen=_ycen, xsize=_xsize, ysize=_ysize, erase=_erase,\ zrange='no', zscale='no', z1=z11, z2=z22, Stdout=1) answ0 = raw_input('>>> Cuts OK ? [y/n] ? [y] ') if not answ0: answ0='y' elif answ0=='no' or answ0=='NO': answ0='n' if goon: _z1,_z2=string.split(string.split(sss[0])[0],'=')[1],string.split(string.split(sss[0])[1],'=')[1] else: print 'Warning: image '+str(img)+' not found in the directory ' return _z1,_z2,goon
def cleanup_cspp_workdir(workdir): """Clean up the CSPP working dir after processing""" import os import glob filelist = glob.glob('%s/*' % workdir) this = [ os.remove(s) for s in filelist if os.path.isfile(s) ] print "Number of files left after cleaning working dir = ", len(this) #shutil.rmtree(workdir) #os.mkdir(workdir) return
def make_combined_species_lists(): for flu in ['H9']: flist = glob.glob('/Users/yujiazhou/Documents/nextflu/H9_nextflu-master/auspice/'+flu+'*species.tsv') all_species=set() for fname in flist: with open(fname) as infile: all_species.update([tuple(line.split('\t')[:2]) for line in infile]) with open('/Users/yujiazhou/Documents/nextflu/H9_nextflu-master/auspice/'+flu+'_all_species.tsv', 'w') as ofile: for strain, acc in all_species: ofile.write(strain+'\t'+species+'\t'+acc+'\n')
def make_combined_accession_number_lists(): for flu in ['H9', 'H4', 'H7', 'H10']: flist = glob.glob('/Users/yujiazhou/Documents/nextflu/H9_nextflu-master/auspice/data/'+flu+'*accession_numbers.tsv') all_accessions=set() for fname in flist: with open(fname) as infile: all_accessions.update([tuple(line.split('\t')[:2]) for line in infile]) with open('/Users/yujiazhou/Documents/nextflu/H9_nextflu-master/auspice/data/'+flu+'_all_accession_numbers.tsv', 'w') as ofile: for strain, acc in all_accessions: ofile.write(strain+'\t'+acc+'\n')
def make_combined_accession_number_lists(): for flu in ['H3N2', 'H1N1pdm', 'Vic', 'Yam']: flist = glob.glob('../auspice/data/'+flu+'*accession_numbers.tsv') all_accessions=set() for fname in flist: with open(fname) as infile: all_accessions.update([tuple(line.split('\t')[:2]) for line in infile]) with open('../auspice/data/'+flu+'_all_accession_numbers.tsv', 'w') as ofile: for strain, acc in all_accessions: ofile.write(strain+'\t'+acc+'\n')
def exercise_16(): # test for small molecule multi-sweep indexing, 4 sweeps with different values # of goniometer.fixed_rotation() data_dir = os.path.join(dials_regression, "indexing_test_data", "multi_sweep") import glob pickle_paths = [ glob.glob(os.path.join(data_dir, "SWEEP%i" %(i+1), "index", "*_strong.pickle"))[0] for i in range(4)] sweep_paths = [ glob.glob(os.path.join(data_dir, "SWEEP%i" %(i+1), "index", "*_datablock_import.json"))[0] for i in range(4)] extra_args = ["known_symmetry.space_group=I4"] expected_unit_cell = uctbx.unit_cell( (7.310, 7.310, 6.820, 90.000, 90.000, 90.000)) expected_rmsds = (0.10, 0.7, 0.5) expected_hall_symbol = ' I 4' result = run_one_indexing(" ".join(pickle_paths), " ".join(sweep_paths), extra_args, expected_unit_cell, expected_rmsds, expected_hall_symbol) assert len(result.indexed_reflections) > 1250, len(result.indexed_reflections)
def name_duplicate(img,nome,ext): ########################### import re,string,os,glob import lsc from lsc.util import readhdr,readkey3, delete dimg=readkey3(readhdr(img),'DATE-OBS') listafile=glob.glob(nome+'_?'+ext+'.fits')+glob.glob(nome+'_??'+ext+'.fits') if len(listafile) == 0: nome = nome+"_1"+ext+'.fits' else: date=[] for l in listafile: date.append(readkey3(readhdr(l),'DATE-OBS')) if dimg in date: nome=listafile[date.index(dimg)] # if overwrite: # delete(nome) else: n=1 while nome+'_'+str(n)+str(ext)+'.fits' in listafile: n=n+1 nome=nome+'_'+str(n)+str(ext)+'.fits' return nome
def list_serial_ports(): # Adapted from http://stackoverflow.com/questions/11303850/what-is-the-cross-platform-method-of-enumerating-serial-ports-in-python-includi system_name = platform.system() assert system_name != "Windows", "gross OS error" if system_name == "Windows": # Scan for available ports. available = [] for i in range(256): try: s = serial.Serial(i) available.append(i) s.close() except serial.SerialException: pass return available elif system_name == "Darwin": # Mac return glob.glob('/dev/tty*') + glob.glob('/dev/cu*') elif system_name == "Linux": # + glob('/dev/ttyS*') return glob('/dev/ttyACM*') + glob('/dev/ttyUSB*') else: print("Error: unknown system: " + system_name) exit(1)
def exercise_17(): # test for small molecule multi-sweep indexing, 3 sweeps with different values # of goniometer setting rotation (i.e. phi scans) data_dir = os.path.join(dials_regression, "dials-191") import glob pickle_paths = [ glob.glob(os.path.join(data_dir, "*SWEEP%i*_strong.pickle" %(i+1)))[0] for i in range(3)] sweep_paths = [ glob.glob(os.path.join(data_dir, "*SWEEP%i*_datablock.json" %(i+1)))[0] for i in range(3)] extra_args = ["filter_ice=False"] expected_unit_cell = uctbx.unit_cell( (9.440, 15.313, 17.126, 90.073, 90.106, 79.248)) expected_rmsds = (0.32, 0.34, 0.005 ) expected_hall_symbol = ' P 1' result = run_one_indexing(" ".join(pickle_paths), " ".join(sweep_paths), extra_args, expected_unit_cell, expected_rmsds, expected_hall_symbol) assert len(result.indexed_reflections) > 12000, len(result.indexed_reflections) # expect at least indexed 2000 reflections per experiment for i in range(3): assert (result.indexed_reflections['id'] == i).count(True) > 2000
def init_db(): with app.app_context(): db = get_db() is_db_inited = query_db( """SELECT CASE WHEN EXISTS (SELECT * FROM SchemaVersion LIMIT 1) THEN 1 ELSE 0 END""") if not is_db_inited: for fname in sorted(glob.glob(SQL_SCHEMA_FILES)): print 'sql schema file' print name with app.open_resource(fname, mode='r') as f: db.cursor().executescript(f.read()) db.commit()
def main( ): args = parse_args() if os.path.isdir( args.input ): sffs = glob.glob( args.input + '/*.sff' ) elif os.path.exists( args.input ): sffs = [args.input] else: raise ValueError( "{} is not a valid directory or sff file".format(args.input) ) # Convert all input sff to fastq for sff in sffs: bn, ext = os.path.splitext( sff ) outname = bn + '.fastq' SeqIO.write( SeqIO.parse( sff, 'sff' ), outname, 'fastq' )
def read_mtf(self, mtf_filenames): """ Reads TF annotation in mtf (internal format; check manual) format. *Keyword arguments:* - mtf_filenames -- A string, or a list of strings, representing .mtf file paths. """ if not isinstance(mtf_filenames, list): mtf_filenames = [mtf_filenames] file_list = [filename for pattern in mtf_filenames for filename in glob.glob(npath(pattern))] # Iterating over the file name list for filename in file_list: database = os.path.splitext(os.path.basename(filename))[0] # Opening MTF file mtf_file = open(filename, "r") # Reading file for line in mtf_file: # Processing line line_list = line.strip().split("\t") tf_id = line_list[0].strip() name = line_list[1].strip() version = line_list[2].strip() gene_names = line_list[3].strip().split("+") tf_class = line_list[4].strip() uniprot_ids = line_list[5].strip().split(";") data_source = line_list[6].strip() tax_group = line_list[7].strip() species = line_list[8].strip() threshold_list = line_list[9].strip().split(",") fpr_list = [0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001] thresholds = {} for i in range(0, 6): thresholds[fpr_list[i]] = float(threshold_list[i]) self.add(MotifAnnotation(tf_id, name, database, version, gene_names, tf_class, uniprot_ids, data_source, tax_group, species, thresholds)) # Termination mtf_file.close()
def copy_extensions(self, extensions): super(MediaCollector, self).copy_extensions(extensions) # Create the media subdir where the # Python files are collected. # media = os.path.join('foo', 'media') full = os.path.join(self.collect_dir, "resources") if not os.path.exists(full): self.mkpath(full) # Copy the media files to the collection dir. # Also add the copied file to the list of compiled # files so it will be included in zipfile. for f in glob.glob('../shared/resources/*'): name = os.path.basename(f) self.copy_file(f, os.path.join(full, name)) self.compiled_files.append(os.path.join(media, name))
def fix_gtksharp_configs(self): print 'Fixing GTK# configuration files...', count = 0 libs = [ 'atk-sharp', 'gdk-sharp', 'glade-sharp', 'glib-sharp', 'gtk-dotnet', 'gtk-sharp', 'pango-sharp' ] gac = os.path.join(bockbuild.package_root, "lib", "mono", "gac") confs = [glob.glob(os.path.join(gac, x, "*", "*.dll.config")) for x in libs] for c in itertools.chain(*confs): count = count + 1 self.fix_dllmap(c, lambda line: "dllmap" in line) print count
def load_directory(self, db_list): for directory in db_list: for file_name in glob.glob(directory + "/*.pwm"): tf_id = os.path.splitext(os.path.basename(file_name))[0] name = tf_id database = os.path.basename(directory) version = "0" gene_names = None tf_class = None uniprot_ids = None data_source = None tax_group = None species = None thresholds = {} self.add(MotifAnnotation(tf_id, name, database, version, gene_names, tf_class, uniprot_ids, data_source, tax_group, species, thresholds))