def fit_spectra(data, t0, sig, N=10000):
    """Fit spectra runs global mcmc on one data set
    
       Parameters:
       -----------
       data: list
           List containing a spectral object, SN template flux at the same 
           wavelengths as the spectral object, and a galaxy template flux at the
           same wavelengths of the spectral object:w

       Output
       ------
       n1: float
           Best normalization for the SN template

       n2: float
           Best normalization for the galaxy template

       likelihood: float
           Likelihood for best fit combination of SN and galaxy template


    """
    global_mcmc.mcmc(likelihood, prior, t0, N, sig, data, "sn_spectral_fitting.txt")

    # read in results from mcmc
    p1, p2, l = np.loadtxt("sn_spectral_fitting.txt", unpack=True)
    i = np.array(l).argmax()
    n1 = p1[i]
    n2 = p2[i]
    return n1, n2, l[i]
Exemple #2
0
fout=open('final_params.dat',  'w')

sig=np.array([0.1,0.1])*7
t0=np.array([0.5,0.5])
spec=loadtext(sys.argv[1])
spec.wavelength = spec.wavelength / (1+float(sys.argv[2]))
N=int(sys.argv[3]) 

for snt in snlist:
   for galt in gallist: 
    sntmpl=loadtext2(snt)
    galtmpl=loadsdss(pyfits.open(galt))
    isnflux=interpo(spec.wavelength, sntmpl.wavelength, sntmpl.flux)
    igalflux=interpo(spec.wavelength, galtmpl.wavelength, galtmpl.flux ) 
    data=[spec, isnflux, igalflux]
    global_mcmc.mcmc(likelihood,prior,t0,N,sig,data, snt + '_' + galt +'.txt')
    #read in results from mcmc
    p1, p2, l = np.loadtxt(snt + '_' + galt + '.txt', unpack=True)
    i = np.array(l).argmax()
    n1 = p1[i]
    n2 = p2[i]
    fout.write('%s %s %f %f %f\n' % (snt,galt, n1, n2, l[i]))

fout.close()
fin=open('final_params.dat', 'r')
fin_lines=file.readlines(fin)
norm1, norm2,like=np.loadtxt('final_params.dat',usecols=(2, 3, 4), unpack=True)
k=like.argmax()
print fin_lines[k]

norm1=float(fin_lines[k].split()[2])