class ThreeComponentNoIrf: model = load_model(MODEL_3C_NO_IRF, format_name="yml_str") initial_parameters = load_parameters(PARAMETERS_3C_NO_IRF_INITIAL, format_name="yml_str") wanted_parameters = load_parameters(PARAMETERS_3C_NO_IRF_WANTED, format_name="yml_str") time = np.arange(0, 100, 1.5) spectral = np.arange(600, 750, 10) axis = {"time": time, "spectral": spectral}
def test_save_model( tmp_path: Path, ): """Check all files exist.""" model_path = tmp_path / "testmodel.yml" save_model(file_name=model_path, format_name="yml", model=MODEL) assert model_path.is_file() assert model_path.read_text() == want assert load_model(model_path).valid()
def setup(self): dataset1 = load_dataset(SCRIPT_DIR / "data/data1.ascii") dataset2 = load_dataset(SCRIPT_DIR / "data/data2.ascii") model = load_model(str(SCRIPT_DIR / "models/model.yml")) parameters = load_parameters(str(SCRIPT_DIR / "models/parameters.yml")) self.scheme = Scheme( model, parameters, { "dataset1": dataset1, "dataset2": dataset2 }, maximum_number_function_evaluations=11, non_negative_least_squares=True, optimization_method="TrustRegionReflection", )
def read_model_from_yaml_file(model_file: str) -> Model: """Parse ``model.yaml`` file to :class:`Model`. Warning ------- Deprecated use ``glotaran.io.load_model(model_file)`` instead. Parameters ---------- model_file : str File with model spec description as yaml. Returns ------- Model Model described in ``model_file``. """ return load_model(model_file)
def read_model_from_yaml(model_yml_str: str) -> Model: """Parse ``yaml`` string to :class:`Model`. Warning ------- Deprecated use ``glotaran.io.load_model(model_yml_str, format_name="yml_str")`` instead. Parameters ---------- model_yml_str : str Model spec description in yaml. Returns ------- Model Model described in ``model_yml_str``. """ return load_model(model_yml_str, format_name="yml_str")
DATA_PATH1 = "data/data1.ascii" DATA_PATH2 = "data/data2.ascii" MODEL_PATH = "models/model.yml" PARAMETERS_FILE_PATH = "models/parameters.yml" # %% Setup necessary (output) paths results_folder, script_folder = setup_case_study(Path(__file__)) output_folder = results_folder.joinpath("target_analysis") print(f"- Using folder {output_folder.name} to read/write files for this run") # %% Load in data, model and parameters # dataset1 = ExplicitFile(script_folder.joinpath(DATA_PATH1)).read() # dataset2 = ExplicitFile(script_folder.joinpath(DATA_PATH2)).read() dataset1 = load_dataset(script_folder.joinpath(DATA_PATH1)) dataset2 = load_dataset(script_folder.joinpath(DATA_PATH2)) model = load_model(script_folder.joinpath(MODEL_PATH)) parameters = load_parameters(script_folder.joinpath(PARAMETERS_FILE_PATH)) # %% Validate model and parameters print(model.validate(parameters=parameters)) # %% Construct the analysis scheme scheme = Scheme( model, parameters, { "dataset1": dataset1, "dataset2": dataset2 }, maximum_number_function_evaluations=11, non_negative_least_squares=True,
def load_model_file(filename, verbose=False): return _load_file(filename, lambda file: load_model(file, format_name="yml"), "model", verbose)
from glotaran.analysis.simulation import simulate from glotaran.io import load_model from glotaran.project import Scheme from glotaran.project.generators import generate_model_yml from glotaran.testing.simulated_data.shared_decay import PARAMETERS from glotaran.testing.simulated_data.shared_decay import SIMULATION_COORDINATES from glotaran.testing.simulated_data.shared_decay import SIMULATION_PARAMETERS SIMULATION_MODEL_YML = generate_model_yml( generator_name="spectral_decay_parallel", generator_arguments={ "nr_compartments": 3, "irf": True }, ) SIMULATION_MODEL = load_model(SIMULATION_MODEL_YML, format_name="yml_str") MODEL_YML = generate_model_yml( generator_name="decay_parallel", generator_arguments={ "nr_compartments": 3, "irf": True }, ) MODEL = load_model(MODEL_YML, format_name="yml_str") DATASET = simulate( SIMULATION_MODEL, "dataset_1", SIMULATION_PARAMETERS, SIMULATION_COORDINATES,
class MultiCenterIrfDispersion: model = load_model(MODEL_MULTIPULSE_IRF_DISPERSION, format_name="yml_str") parameters = load_parameters(PARAMETERS_MULTIPULSE_IRF_DISPERSION, format_name="yml_str") axis = {"time": _time_axis(), "spectral": _spectral_axis()}
class SimpleIrfDispersion: model = load_model(MODEL_SIMPLE_IRF_DISPERSION, format_name="yml_str") parameters = load_parameters(PARAMETERS_SIMPLE_IRF_DISPERSION, format_name="yml_str") axis = {"time": _time_axis(), "spectral": _spectral_axis()}
class MultiIrfDispersion: model = load_model(MODEL_MULTI_IRF_DISPERSION, format_name="yml_str") parameters = load_parameters(PARAMETERS_MULTI_IRF_DISPERSION, format_name="yml_str") time = np.arange(-1, 5, 0.2) spectral = np.arange(300, 500, 100) axis = {"time": time, "spectral": spectral}
def model(): spec_path = join(THIS_DIR, "test_model_spec.yml") m = load_model(spec_path) print(m.markdown()) return m