Exemple #1
0
def append_process(xmldoc, cluster_algorithm, comment):
	return ligolw_process.register_to_xmldoc(
		xmldoc,
		program = process_program_name,
		paramdict = {
			"cluster_algorithm": cluster_algorithm
		},
		version = __version__,
		cvs_repository = u"lscsoft",
		cvs_entry_time = __date__,
		comment = comment
	)
def gen_likelihood_control(coinc_params_distributions, seglists, name = u"ligolw_burca_tailor", comment = u""):
	xmldoc = ligolw.Document()
	node = xmldoc.appendChild(ligolw.LIGO_LW())

	process = ligolw_process.register_to_xmldoc(xmldoc, program = process_program_name, paramdict = {}, version = __version__, cvs_repository = "lscsoft", cvs_entry_time = __date__, comment = comment)
	coinc_params_distributions.process_id = process.process_id
	ligolw_search_summary.append_search_summary(xmldoc, process, ifos = seglists.keys(), inseg = seglists.extent_all(), outseg = seglists.extent_all())

	node.appendChild(coinc_params_distributions.to_xml(name))

	ligolw_process.set_process_end_time(process)

	return xmldoc
Exemple #3
0
    def save_xml(self, filename):
        """
        Save the MDC set as an XML SimBurstTable.

        Parameters
        ----------
        filename : str
           The location to save the xml file. The output is gzipped, so ending it with 
           a ".gz" would stick with convention.
        """
        xmldoc = ligolw.Document()
        lw = xmldoc.appendChild(ligolw.LIGO_LW())
        sim = lsctables.New(self.table_type)
        lw.appendChild(sim)
        # This needs to be given the proper metadata once the package has the maturity to
        # write something sensible.
        for waveform in self.waveforms:
            procrow = process.register_to_xmldoc(xmldoc, "minke_burst_mdc+{}".format(minke.__version__), {}) # waveform.params)
            try:
                waveform_row = waveform._row(sim)
                waveform_row.process_id = procrow.process_id
            except:
                row = sim.RowType()
                for a in self.table_type.validcolumns.keys():
                    if a in waveform.params.keys():
                        setattr(row, a, waveform.params[a])
                    else:
                        if not hasattr(waveform, a):
                            setattr(row, a, 0)
                        else:
                            setattr(row, a, getattr(waveform, a))

                row.waveform = waveform.waveform
                if self.table_type == lsctables.SimBurstTable:
                    # Fill in the time
                    row.set_time_geocent(GPS(float(waveform.time)))
                    # Get the sky locations
                    row.ra, row.dec, row.psi = waveform.ra, waveform.dec, waveform.psi
                row.simulation_id = waveform.simulation_id
                row.waveform_number = random.randint(0,int(2**32)-1)
                ### !! This needs to be updated.
                row.process_id = "process:process_id:0" #procrow.process_id

                waveform_row = row
            
            sim.append(waveform_row)
            #del waveform_row
        # Write out the xml and gzip it.
        utils.write_filename(xmldoc, filename, gz=True)
Exemple #4
0
def append_process(xmldoc, match_algorithm, comment):
	"""
	Convenience wrapper for adding process metadata to the document.
	"""
	return ligolw_process.register_to_xmldoc(
		xmldoc,
		program = process_program_name,
		paramdict = {
			"match_algorithm": match_algorithm
		},
		version = __version__,
		cvs_repository = u"lscsoft",
		cvs_entry_time = __date__,
		comment = comment
	)
def new_doc(comment = None, **kwargs):
	doc = ligolw.Document()
	doc.appendChild(ligolw.LIGO_LW())
	process = ligolw_process.register_to_xmldoc(
		doc,
		program = u"ligolw_tisi",
		paramdict = kwargs,
		version = __version__,
		cvs_repository = u"lscsoft",
		cvs_entry_time = __date__,
		comment = comment
	)
	timeslidetable = lsctables.New(lsctables.TimeSlideTable)
	doc.childNodes[0].appendChild(timeslidetable)

	return doc, process
Exemple #6
0
    def save_xml(self, filename):
        """
        Save the MDC set as an XML SimBurstTable.

        Parameters
        ----------
        filename : str
           The location to save the xml file. The output is gzipped, so ending it with 
           a ".gz" would stick with convention.
        """
        xmldoc = ligolw.Document()
        lw = xmldoc.appendChild(ligolw.LIGO_LW())
        sim = lsctables.New(lsctables.SimBurstTable)
        lw.appendChild(sim)
        # This needs to be given the proper metadata once the package has the maturity to
        # write something sensible.
        for waveform in self.waveforms:
            procrow = process.register_to_xmldoc(xmldoc, "minke_burst_mdc", {}) # waveform.params)
            waveform_row = waveform._row(sim)
            waveform_row.process_id = procrow.process_id
            sim.append(waveform_row)
            #del waveform_row
        # Write out the xml and gzip it.
        utils.write_filename(xmldoc, filename, gz=True)
Exemple #7
0
def setup_analysislogging(workflow, segs_list, insps, args, output_dir,
                          program_name="workflow", tags=[]):
    """
    This module sets up the analysis logging xml file that contains the
    following information:

    * Command line arguments that the code was run with
    * Segment list of times marked as SCIENCE
    * Segment list of times marked as SCIENCE and "OK" ie. not CAT_1 vetoed
    * Segment list of times marked as SCIENCE_OK and present on the cluster
    * The times that will be analysed by the matched-filter jobs

    Parameters
    -----------
    workflow : pycbc.workflow.core.Workflow
        The Workflow instance.
    segs_list : pycbc.workflow.core.FileList
        A list of Files containing the information needed to generate the
        segments above. For segments generated at run time the associated
        segmentlist is a property of this object.
    insps : pycbc.workflow.core.FileList
        The output files from the matched-filtering module. Used to identify
        what times have been analysed in this workflow.
    output_dir : path
        Directory to output any files to.
    program_name : string (optional, default = "workflow")
        The program name to stick in the process/process_params tables.
    tags : list (optional, default = [])
        If given restrict to considering inspiral and segment files that
        are tagged with all tags in this list.
    """
    logging.info("Entering analysis logging module.")
    make_analysis_dir(output_dir)

    # Construct the summary XML file
    outdoc = ligolw.Document()
    outdoc.appendChild(ligolw.LIGO_LW())

    # Add process and process_params tables
    proc_id = process.register_to_xmldoc(outdoc, program_name,
                                            vars(args) ).process_id

    # Now add the various segment lists to this file
    summ_segs = segmentlist([workflow.analysis_time])
    
    # If tags is given filter by tags
    if tags:
        for tag in tags:
            segs_list = segs_list.find_output_with_tag(tag)
            insps = insps.find_output_with_tag(tag)

    for ifo in workflow.ifos:
        # Lets get the segment lists we need
        seg_ifo_files = segs_list.find_output_with_ifo(ifo)
        # SCIENCE
        sci_seg_file = seg_ifo_files.find_output_with_tag('SCIENCE')
        if len(sci_seg_file) == 1:
            sci_seg_file = sci_seg_file[0]
            print sci_seg_file.segment_dict.keys()
            sci_segs = sci_seg_file.segment_dict['%s:%s' %(ifo, 'RESULT')]
            sci_def_id = segmentdb_utils.add_to_segment_definer(outdoc, proc_id,
                                                ifo, "CBC_WORKFLOW_SCIENCE", 0)
            segmentdb_utils.add_to_segment(outdoc, proc_id, sci_def_id,
                                                                      sci_segs)
            segmentdb_utils.add_to_segment_summary(outdoc, proc_id, sci_def_id,
                                                         summ_segs, comment='')
        elif sci_seg_file:
            # FIXME: While the segment module is still fractured (#127) this
            #        may not work. Please update when #127 is resolved
            pass
            #err_msg = "Got %d files matching %s and %s. Expected 1 or 0." \
            #          %(len(sci_seg_file), ifo, 'SCIENCE')
            #raise ValueError(err_msg)

        # SCIENCE_OK
        sci_ok_seg_file = seg_ifo_files.find_output_with_tag('SCIENCE_OK')
        if len(sci_ok_seg_file) == 1:
            sci_ok_seg_file = sci_ok_seg_file[0]
            sci_ok_segs = \
                      sci_ok_seg_file.segment_dict['%s:%s' %(ifo,'SCIENCE_OK')]
            sci_ok_def_id = segmentdb_utils.add_to_segment_definer(outdoc,
                                       proc_id, ifo, "CBC_WORKFLOW_SCIENCE_OK", 0)
            segmentdb_utils.add_to_segment(outdoc, proc_id, sci_ok_def_id,
                                                                   sci_ok_segs)
            segmentdb_utils.add_to_segment_summary(outdoc, proc_id,
                                          sci_ok_def_id, summ_segs, comment='')
        elif sci_ok_seg_file:
            # FIXME: While the segment module is still fractured (#127) this
            #        may not work. Please update when #127 is resolved
            pass
            #err_msg = "Got %d files matching %s and %s. Expected 1 or 0." \
            #          %(len(sci_ok_seg_file), ifo, 'SCIENCE_OK')
            #raise ValueError(err_msg)


        # SCIENCE_AVAILABLE
        sci_available_seg_file = seg_ifo_files.find_output_with_tag(\
                                                           'SCIENCE_AVAILABLE')
        if len(sci_available_seg_file) == 1:
            sci_available_seg_file = sci_available_seg_file[0]
            sci_available_segs = sci_available_seg_file.segment_dict
            sci_available_segs = \
                        sci_available_segs['%s:%s' %(ifo, 'SCIENCE_AVAILABLE')]
            sci_available_def_id = segmentdb_utils.add_to_segment_definer(\
                        outdoc, proc_id, ifo, "CBC_WORKFLOW_SCIENCE_AVAILABLE", 0)
            segmentdb_utils.add_to_segment(outdoc, proc_id,
                                      sci_available_def_id, sci_available_segs)
            segmentdb_utils.add_to_segment_summary(outdoc, proc_id,
                                   sci_available_def_id, summ_segs, comment='')
        elif sci_available_seg_file:
            # FIXME: While the segment module is still fractured (#127) this
            #        may not work. Please update when #127 is resolved
            pass
            #err_msg = "Got %d files matching %s and %s. Expected 1 or 0." \
            #          %(len(sci_available_seg_file), ifo, 'SCIENCE_AVAILABLE')
            #raise ValueError(err_msg)

        # ANALYSABLE - This one needs to come from inspiral outs
        ifo_insps = insps.find_output_with_ifo(ifo)
        analysable_segs = ifo_insps.get_times_covered_by_files()

        analysable_def_id = segmentdb_utils.add_to_segment_definer(outdoc,
                                     proc_id, ifo, "CBC_WORKFLOW_ANALYSABLE", 0)
        segmentdb_utils.add_to_segment(outdoc, proc_id, analysable_def_id,
                                                               analysable_segs)
        segmentdb_utils.add_to_segment_summary(outdoc, proc_id,
                                      analysable_def_id, summ_segs, comment='')

    summ_file = File(workflow.ifos, "WORKFLOW_SUMMARY",
                     workflow.analysis_time, extension=".xml",
                     directory=output_dir)
    summ_file.PFN(summ_file.storage_path, site='local')
    utils.write_filename(outdoc, summ_file.storage_path)

    return FileList([summ_file])
    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    lsctables.SnglInspiralTable.RowType = SnglInspiralTable
    tbl = lsctables.New(lsctables.SnglInspiralTable)
    xmldoc.childNodes[-1].appendChild(tbl)

    # initialize random seed
    np.random.mtrand.seed(opts.seed)


#
# prepare process table with information about the current program
#
opts_dict = dict((k, v) for k, v in opts.__dict__.iteritems() if v is not False and v is not None)
process = ligolw_process.register_to_xmldoc(xmldoc, "lalapps_cbc_sbank",
    opts_dict, version="no version",
    cvs_repository="sbank", cvs_entry_time=strftime('%Y/%m/%d %H:%M:%S'))


#
# populate params dictionary to be passed to the generators
#

if opts.trial_waveforms:
    trialdoc = utils.load_filename(opts.trial_waveforms, contenthandler=ContentHandler, gz=opts.trial_waveforms.endswith('.gz'))
    trial_sngls = lsctables.SnglInspiralTable.get_table(trialdoc)
    proposal = [tmplt_class.from_sngl(t, bank=bank) for t in trial_sngls]

else:
    params = {'mass1': (opts.mass1_min, opts.mass1_max),
          'mass2': (opts.mass2_min, opts.mass2_max),
    del CMAP["mass2"]
    CMAP[("mass1", "mass2")] = ("mass1", "mass2")
    ar = numpy.random.random((len(CMAP), 10))
    samp_dict = dict(zip(CMAP, ar))
    ar = samp_dict[("mass1", "mass2")]
    samp_dict[("mass1", "mass2")] = numpy.array([ar, ar])
    del CMAP[("mass1", "mass2")]
    CMAP["mass1"] = "mass1"
    CMAP["mass2"] = "mass2"

    samp_dict["samp_n"] = numpy.array(range(0, 10))
    CMAP["sample_n"] = "sample_n"

    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    process.register_to_xmldoc(xmldoc, sys.argv[0], {})

    append_samples_to_xmldoc(xmldoc, samp_dict)

    def gaussian(x, mu=0, std=1):
        return 1 / numpy.sqrt(numpy.pi * 2) / std * numpy.exp(
            -(x - mu)**2 / 2 / std**2)

    m1m, m2m = 1.4, 1.5
    m1, m2 = numpy.random.random(2000).reshape(2, 1000) * 1.0 + 1.0
    loglikes = [
        gaussian(m1i, m1m) * gaussian(m2i, m2m) for m1i, m2i in zip(m1, m2)
    ]
    #loglikelihood = - 7.5**2/2
    #append_likelihood_result_to_xmldoc(xmldoc, loglikelihood, **{"mass1": 1.4, "mass2": 1.4, "ifos": "H1,L1,V1"})
    for m1i, m2i, loglikelihood in zip(m1, m2, loglikes):
Exemple #10
0
    def to_coinc_xml_object(self, file_name):
        # FIXME: This function will only work with two ifos!!

        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        ifos = [ifo for ifo in self.sngl_files.keys()]
        proc_id = ligolw_process.register_to_xmldoc(
            outdoc,
            'pycbc', {},
            ifos=ifos,
            comment='',
            version=pycbc_version.git_hash,
            cvs_repository='pycbc/' + pycbc_version.git_branch,
            cvs_entry_time=pycbc_version.date).process_id

        search_summ_table = lsctables.New(lsctables.SearchSummaryTable)
        coinc_h5file = self.coinc_file.h5file
        start_time = coinc_h5file['segments']['coinc']['start'][:].min()
        end_time = coinc_h5file['segments']['coinc']['end'][:].max()
        num_trigs = len(self.sort_arr)
        search_summary = return_search_summary(start_time, end_time, num_trigs,
                                               ifos)
        search_summ_table.append(search_summary)
        outdoc.childNodes[0].appendChild(search_summ_table)

        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)
        time_slide_table = lsctables.New(lsctables.TimeSlideTable)

        # Set up time_slide table
        time_slide_id = lsctables.TimeSlideID(0)
        for ifo in ifos:
            time_slide_row = lsctables.TimeSlide()
            time_slide_row.instrument = ifo
            time_slide_row.time_slide_id = time_slide_id
            time_slide_row.offset = 0
            time_slide_row.process_id = proc_id
            time_slide_table.append(time_slide_row)

        # Set up coinc_definer table
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincidences"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)

        bank_col_names = ['mass1', 'mass2', 'spin1z', 'spin2z']
        bank_col_vals = {}
        for name in bank_col_names:
            bank_col_vals[name] = self.get_bankfile_array(name)

        coinc_event_names = ['ifar', 'time1', 'fap', 'stat']
        coinc_event_vals = {}
        for name in coinc_event_names:
            coinc_event_vals[name] = self.get_coincfile_array(name)

        sngl_col_names = [
            'snr', 'chisq', 'chisq_dof', 'bank_chisq', 'bank_chisq_dof',
            'cont_chisq', 'cont_chisq_dof', 'end_time', 'template_duration',
            'coa_phase', 'sigmasq'
        ]
        sngl_col_vals = {}
        for name in sngl_col_names:
            sngl_col_vals[name] = self.get_snglfile_array_dict(name)

        for idx in xrange(len(self.sort_arr)):
            # Set up IDs and mapping values
            coinc_id = lsctables.CoincID(idx)

            # Set up sngls
            # FIXME: As two-ifo is hardcoded loop over all ifos
            sngl_combined_mchirp = 0
            sngl_combined_mtot = 0
            for ifo in ifos:
                sngl_id = self.trig_id[ifo][idx]
                event_id = lsctables.SnglInspiralID(sngl_id)
                sngl = return_empty_sngl()
                sngl.event_id = event_id
                sngl.ifo = ifo
                for name in sngl_col_names:
                    val = sngl_col_vals[name][ifo][idx]
                    if name == 'end_time':
                        sngl.set_end(LIGOTimeGPS(val))
                    else:
                        setattr(sngl, name, val)
                for name in bank_col_names:
                    val = bank_col_vals[name][idx]
                    setattr(sngl, name, val)
                sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                    sngl.mass1, sngl.mass2)
                sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                    sngl.mass1, sngl.mass2)
                sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
                sngl_combined_mchirp += sngl.mchirp
                sngl_combined_mtot += sngl.mtotal

                sngl_inspiral_table.append(sngl)

                # Set up coinc_map entry
                coinc_map_row = lsctables.CoincMap()
                coinc_map_row.table_name = 'sngl_inspiral'
                coinc_map_row.coinc_event_id = coinc_id
                coinc_map_row.event_id = event_id
                coinc_event_map_table.append(coinc_map_row)

            sngl_combined_mchirp = sngl_combined_mchirp / len(ifos)
            sngl_combined_mtot = sngl_combined_mtot / len(ifos)

            # Set up coinc inspiral and coinc event tables
            coinc_event_row = lsctables.Coinc()
            coinc_inspiral_row = lsctables.CoincInspiral()
            coinc_event_row.coinc_def_id = coinc_def_id
            coinc_event_row.nevents = len(ifos)
            coinc_event_row.instruments = ','.join(ifos)
            coinc_inspiral_row.set_ifos(ifos)
            coinc_event_row.time_slide_id = time_slide_id
            coinc_event_row.process_id = proc_id
            coinc_event_row.coinc_event_id = coinc_id
            coinc_inspiral_row.coinc_event_id = coinc_id
            coinc_inspiral_row.mchirp = sngl_combined_mchirp
            coinc_inspiral_row.mass = sngl_combined_mtot
            coinc_inspiral_row.set_end(\
                                   LIGOTimeGPS(coinc_event_vals['time1'][idx]))
            coinc_inspiral_row.snr = coinc_event_vals['stat'][idx]
            coinc_inspiral_row.false_alarm_rate = coinc_event_vals['fap'][idx]
            coinc_inspiral_row.combined_far = 1. / coinc_event_vals['ifar'][idx]
            # Transform to Hz
            coinc_inspiral_row.combined_far = \
                                    coinc_inspiral_row.combined_far / YRJUL_SI
            coinc_event_row.likelihood = 0.
            coinc_inspiral_row.minimum_duration = 0.
            coinc_event_table.append(coinc_event_row)
            coinc_inspiral_table.append(coinc_inspiral_row)

        outdoc.childNodes[0].appendChild(coinc_def_table)
        outdoc.childNodes[0].appendChild(coinc_event_table)
        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(time_slide_table)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        ligolw_utils.write_filename(outdoc, file_name)
Exemple #11
0
    def __init__(self, ifos, coinc_results, **kwargs):
        """Initialize a ligolw xml representation of a zerolag trigger
        for upload from pycbc live to gracedb.

        Parameters
        ----------
        ifos: list of strs
            A list of the ifos participating in this trigger.
        coinc_results: dict of values
            A dictionary of values. The format is defined in
            pycbc/events/coinc.py and matches the on disk representation
            in the hdf file for this time.
        psds: dict of FrequencySeries
            Dictionary providing PSD estimates for all involved detectors.
        low_frequency_cutoff: float
            Minimum valid frequency for the PSD estimates.
        high_frequency_cutoff: float, optional
            Maximum frequency considered for the PSD estimates. Default None.
        followup_data: dict of dicts, optional
            Dictionary providing SNR time series for each detector,
            to be used in sky localization with BAYESTAR. The format should
            be `followup_data['H1']['snr_series']`. More detectors can be
            present than given in `ifos`. If so, the extra detectors will only
            be used for sky localization.
        channel_names: dict of strings, optional
            Strain channel names for each detector.
            Will be recorded in the sngl_inspiral table.
        mc_area_args: dict of dicts, optional
            Dictionary providing arguments to be used in source probability
            estimation with pycbc/mchirp_area.py
        """
        self.template_id = coinc_results['foreground/%s/template_id' % ifos[0]]
        self.coinc_results = coinc_results
        self.ifos = ifos

        # remember if this should be marked as HWINJ
        self.is_hardware_injection = ('HWINJ' in coinc_results
                                      and coinc_results['HWINJ'])

        # Check if we need to apply a time offset (this may be permerger)
        self.time_offset = 0
        rtoff = 'foreground/{}/time_offset'.format(ifos[0])
        if rtoff in coinc_results:
            self.time_offset = coinc_results[rtoff]

        if 'followup_data' in kwargs:
            fud = kwargs['followup_data']
            assert len({fud[ifo]['snr_series'].delta_t for ifo in fud}) == 1, \
                    "delta_t for all ifos do not match"
            self.snr_series = {ifo: fud[ifo]['snr_series'] for ifo in fud}
            usable_ifos = fud.keys()
            followup_ifos = list(set(usable_ifos) - set(ifos))

            for ifo in self.snr_series:
                self.snr_series[ifo].start_time += self.time_offset
        else:
            self.snr_series = None
            usable_ifos = ifos
            followup_ifos = []

        # Set up the bare structure of the xml document
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        proc_id = ligolw_process.register_to_xmldoc(
            outdoc, 'pycbc', {}, ifos=usable_ifos, comment='',
            version=pycbc_version.version,
            cvs_repository='pycbc/'+pycbc_version.git_branch,
            cvs_entry_time=pycbc_version.date).process_id

        # Set up coinc_definer table
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincs"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)
        outdoc.childNodes[0].appendChild(coinc_def_table)

        # Set up coinc inspiral and coinc event tables
        coinc_id = lsctables.CoincID(0)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_event_row = lsctables.Coinc()
        coinc_event_row.coinc_def_id = coinc_def_id
        coinc_event_row.nevents = len(usable_ifos)
        coinc_event_row.instruments = ','.join(usable_ifos)
        coinc_event_row.time_slide_id = lsctables.TimeSlideID(0)
        coinc_event_row.process_id = proc_id
        coinc_event_row.coinc_event_id = coinc_id
        coinc_event_row.likelihood = 0.
        coinc_event_table.append(coinc_event_row)
        outdoc.childNodes[0].appendChild(coinc_event_table)

        # Set up sngls
        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)

        sngl_populated = None
        network_snrsq = 0
        for sngl_id, ifo in enumerate(usable_ifos):
            sngl = return_empty_sngl(nones=True)
            sngl.event_id = lsctables.SnglInspiralID(sngl_id)
            sngl.process_id = proc_id
            sngl.ifo = ifo
            names = [n.split('/')[-1] for n in coinc_results
                     if 'foreground/%s' % ifo in n]
            for name in names:
                val = coinc_results['foreground/%s/%s' % (ifo, name)]
                if name == 'end_time':
                    val += self.time_offset
                    sngl.set_end(lal.LIGOTimeGPS(val))
                else:
                    try:
                        setattr(sngl, name, val)
                    except AttributeError:
                        pass
            if sngl.mass1 and sngl.mass2:
                sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                        sngl.mass1, sngl.mass2)
                sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                        sngl.mass1, sngl.mass2)
                sngl_populated = sngl
            if sngl.snr:
                sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
                network_snrsq += sngl.snr ** 2.0
            if 'channel_names' in kwargs and ifo in kwargs['channel_names']:
                sngl.channel = kwargs['channel_names'][ifo]
            sngl_inspiral_table.append(sngl)

            # Set up coinc_map entry
            coinc_map_row = lsctables.CoincMap()
            coinc_map_row.table_name = 'sngl_inspiral'
            coinc_map_row.coinc_event_id = coinc_id
            coinc_map_row.event_id = sngl.event_id
            coinc_event_map_table.append(coinc_map_row)

            if self.snr_series is not None:
                snr_series_to_xml(self.snr_series[ifo], outdoc, sngl.event_id)

        # set merger time to the average of the ifo peaks
        self.merger_time = numpy.mean(
                    [coinc_results['foreground/{}/end_time'.format(ifo)]
                     for ifo in ifos]) + self.time_offset

        # for subthreshold detectors, respect BAYESTAR's assumptions and checks
        bayestar_check_fields = ('mass1 mass2 mtotal mchirp eta spin1x '
                                 'spin1y spin1z spin2x spin2y spin2z').split()
        for sngl in sngl_inspiral_table:
            if sngl.ifo in followup_ifos:
                for bcf in bayestar_check_fields:
                    setattr(sngl, bcf, getattr(sngl_populated, bcf))
                sngl.set_end(lal.LIGOTimeGPS(self.merger_time))

        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        # Set up the coinc inspiral table
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_inspiral_row = lsctables.CoincInspiral()
        # This seems to be used as FAP, which should not be in gracedb
        coinc_inspiral_row.false_alarm_rate = 0
        coinc_inspiral_row.minimum_duration = 0.
        coinc_inspiral_row.instruments = tuple(usable_ifos)
        coinc_inspiral_row.coinc_event_id = coinc_id
        coinc_inspiral_row.mchirp = sngl_populated.mchirp
        coinc_inspiral_row.mass = sngl_populated.mtotal
        coinc_inspiral_row.end_time = sngl_populated.end_time
        coinc_inspiral_row.end_time_ns = sngl_populated.end_time_ns
        coinc_inspiral_row.snr = network_snrsq ** 0.5
        far = 1.0 / (lal.YRJUL_SI * coinc_results['foreground/ifar'])
        coinc_inspiral_row.combined_far = far
        coinc_inspiral_table.append(coinc_inspiral_row)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)

        # append the PSDs
        self.psds = kwargs['psds']
        psds_lal = {}
        for ifo in self.psds:
            psd = self.psds[ifo]
            kmin = int(kwargs['low_frequency_cutoff'] / psd.delta_f)
            fseries = lal.CreateREAL8FrequencySeries(
                "psd", psd.epoch, kwargs['low_frequency_cutoff'], psd.delta_f,
                lal.StrainUnit**2 / lal.HertzUnit, len(psd) - kmin)
            fseries.data.data = psd.numpy()[kmin:] / pycbc.DYN_RANGE_FAC ** 2.0
            psds_lal[ifo] = fseries
        make_psd_xmldoc(psds_lal, outdoc)

        # source probabilities estimation
        if 'mc_area_args' in kwargs:
            eff_distances = [sngl.eff_distance for sngl in sngl_inspiral_table]
            probabilities = calc_probabilities(coinc_inspiral_row.mchirp,
                                               coinc_inspiral_row.snr,
                                               min(eff_distances),
                                               kwargs['mc_area_args'])
            self.probabilities = probabilities
        else:
            self.probabilities = None

        self.outdoc = outdoc
        self.time = sngl_populated.get_end()
    return options, filenames

options, filenames = parse_command_line()

opts_dict = dict((k, v) for k, v in options.__dict__.iteritems() if v is not False and v is not None)

for fname in filenames:

    xmldoc=utils.load_filename(fname, gz=fname.endswith(".gz"), verbose = options.verbose, contenthandler=ContentHandler)
    sngl_inspiral_table=lsctables.SnglInspiralTable.get_table(xmldoc)
    process_params_table = lsctables.ProcessParamsTable.get_table(xmldoc)

    # Prepare process table with information about the current program
    process = ligolw_process.register_to_xmldoc(xmldoc,
    "lalapps_cbc_sbank_splitter", opts_dict,
    version="no version", cvs_repository="sbank",
    cvs_entry_time=strftime('%Y/%m/%d %H:%M:%S'))

    # sort template rows
    sngl_inspiral_table.sort(key=attrgetter(options.sort_by))
    sngl_inspiral_table_split = lsctables.table.new_from_template(sngl_inspiral_table)
    sngl_inspiral_table.parentNode.replaceChild(sngl_inspiral_table_split, sngl_inspiral_table)

    if len(sngl_inspiral_table) < options.nbanks:
        raise ValueError, "Not enough templates to create the requested number of subbanks."

    # override/read instrument column
    if options.instrument:
        for row in sngl_inspiral_table:
            row.ifo = options.instrument
    else:
Exemple #13
0
def register_to_xmldoc(xmldoc, parser, opts, **kwargs):
    from glue.ligolw.utils import process
    return process.register_to_xmldoc(
        xmldoc, parser.prog,
        {key: (value.name if hasattr(value, 'read') else value)
        for key, value in opts.__dict__.items()})
Exemple #14
0
    def __init__(self, ifos, coinc_results, **kwargs):
        """Initialize a ligolw xml representation of a zerolag trigger
        for upload from pycbc live to gracedb.

        Parameters
        ----------
        ifos: list of strs
            A list of the ifos pariticipating in this trigger
        coinc_results: dict of values
            A dictionary of values. The format is defined in
            pycbc/events/coinc.py and matches the on disk representation
            in the hdf file for this time.
        """
        self.ifos = ifos
        if 'followup_ifos' in kwargs and kwargs['followup_ifos'] is not None:
            self.followup_ifos = kwargs['followup_ifos']
        else:
            self.followup_ifos = []
        self.template_id = coinc_results['foreground/%s/template_id' %
                                         self.ifos[0]]

        # remember if this should be marked as HWINJ
        self.is_hardware_injection = ('HWINJ' in coinc_results)

        # Set up the bare structure of the xml document
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        proc_id = ligolw_process.register_to_xmldoc(
            outdoc,
            'pycbc', {},
            ifos=ifos,
            comment='',
            version=pycbc_version.git_hash,
            cvs_repository='pycbc/' + pycbc_version.git_branch,
            cvs_entry_time=pycbc_version.date).process_id

        # Set up coinc_definer table
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincs"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)
        outdoc.childNodes[0].appendChild(coinc_def_table)

        # Set up coinc inspiral and coinc event tables
        coinc_id = lsctables.CoincID(0)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_event_row = lsctables.Coinc()
        coinc_event_row.coinc_def_id = coinc_def_id
        coinc_event_row.nevents = len(ifos)
        coinc_event_row.instruments = ','.join(ifos)
        coinc_event_row.time_slide_id = lsctables.TimeSlideID(0)
        coinc_event_row.process_id = proc_id
        coinc_event_row.coinc_event_id = coinc_id
        coinc_event_row.likelihood = 0.
        coinc_event_table.append(coinc_event_row)
        outdoc.childNodes[0].appendChild(coinc_event_table)

        # Set up sngls
        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)

        sngl_event_id_map = {}
        sngl_populated = None
        for sngl_id, ifo in enumerate(ifos + self.followup_ifos):
            sngl = return_empty_sngl(nones=True)
            sngl.event_id = lsctables.SnglInspiralID(sngl_id)
            sngl_event_id_map[ifo] = sngl.event_id
            sngl.process_id = proc_id
            sngl.ifo = ifo
            names = [
                n.split('/')[-1] for n in coinc_results
                if 'foreground/%s' % ifo in n
            ]
            for name in names:
                val = coinc_results['foreground/%s/%s' % (ifo, name)]
                if name == 'end_time':
                    sngl.set_end(lal.LIGOTimeGPS(val))
                else:
                    try:
                        setattr(sngl, name, val)
                    except AttributeError:
                        pass
            if sngl.mass1 and sngl.mass2:
                sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                    sngl.mass1, sngl.mass2)
                sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                    sngl.mass1, sngl.mass2)
                sngl_populated = sngl
            if sngl.snr:
                sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
            sngl_inspiral_table.append(sngl)

            # Set up coinc_map entry
            coinc_map_row = lsctables.CoincMap()
            coinc_map_row.table_name = 'sngl_inspiral'
            coinc_map_row.coinc_event_id = coinc_id
            coinc_map_row.event_id = sngl.event_id
            coinc_event_map_table.append(coinc_map_row)

        # for subthreshold detectors, respect BAYESTAR's assumptions and checks
        bayestar_check_fields = ('mass1 mass2 mtotal mchirp eta spin1x '
                                 'spin1y spin1z spin2x spin2y spin2z').split()
        subthreshold_sngl_time = numpy.mean(
            [coinc_results['foreground/%s/end_time' % ifo] for ifo in ifos])
        for sngl in sngl_inspiral_table:
            if sngl.ifo in self.followup_ifos:
                for bcf in bayestar_check_fields:
                    setattr(sngl, bcf, getattr(sngl_populated, bcf))
                sngl.set_end(lal.LIGOTimeGPS(subthreshold_sngl_time))

        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        # Set up the coinc inspiral table
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_inspiral_row = lsctables.CoincInspiral()
        # This seems to be used as FAP, which should not be in gracedb
        coinc_inspiral_row.false_alarm_rate = 0
        coinc_inspiral_row.minimum_duration = 0.
        coinc_inspiral_row.set_ifos(ifos)
        coinc_inspiral_row.coinc_event_id = coinc_id
        coinc_inspiral_row.mchirp = sngl_populated.mchirp
        coinc_inspiral_row.mass = sngl_populated.mtotal
        coinc_inspiral_row.end_time = sngl_populated.end_time
        coinc_inspiral_row.end_time_ns = sngl_populated.end_time_ns
        coinc_inspiral_row.snr = coinc_results['foreground/stat']
        far = 1.0 / (lal.YRJUL_SI * coinc_results['foreground/ifar'])
        coinc_inspiral_row.combined_far = far
        coinc_inspiral_table.append(coinc_inspiral_row)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)
        self.outdoc = outdoc
        self.time = sngl_populated.get_end()

        # compute SNR time series
        self.upload_snr_series = kwargs['upload_snr_series']
        if self.upload_snr_series:
            htilde = kwargs['bank'][self.template_id]
            self.snr_series = {}
            self.snr_series_psd = {}
            for ifo in self.ifos + self.followup_ifos:
                if ifo in ifos:
                    trig_time = coinc_results['foreground/%s/end_time' % ifo]
                else:
                    trig_time = subthreshold_sngl_time
                self.snr_series[ifo], self.snr_series_psd[ifo] = \
                        compute_followup_snr_series(
                                kwargs['data_readers'][ifo], htilde,
                                trig_time)
                snr_series_to_xml(self.snr_series[ifo], outdoc,
                                  sngl_event_id_map[ifo])
#
#                                     Main
#
# =============================================================================
#

options, filenames = parse_command_line()

if options.verbose:
    print >> sys.stderr, "time-frequency tiles have %g degrees of freedom" % (
        2 * options.delta_t * options.delta_f)

xmldoc = ligolw.Document()
xmldoc.appendChild(ligolw.LIGO_LW())
process = ligolw_process.register_to_xmldoc(xmldoc,
                                            u"lalapps_binj_pic",
                                            options.options_dict,
                                            version=git_version.version)
time_slide_table = xmldoc.childNodes[-1].appendChild(
    lsctables.TimeSlideTable.get_table(
        ligolw_utils.load_filename(options.time_slide_xml,
                                   verbose=options.verbose,
                                   contenthandler=LIGOLWContentHandler)))
time_slide_id = time_slide_table[0].time_slide_id
if options.verbose:
    print >> sys.stderr, "associating injections with time slide ID \"%s\":  %s" % (
        time_slide_id, time_slide_table.as_dict()[time_slide_id])
for row in time_slide_table:
    row.process_id = process.process_id
sim_burst_tbl = xmldoc.childNodes[-1].appendChild(
    lsctables.New(lsctables.SimBurstTable, [
        "process_id", "simulation_id", "time_slide_id", "waveform",
Exemple #16
0
def excess_power(
    ts_data,  # Time series from magnetic field data 
    band=None,  # Channel bandwidth
    channel_name='channel-name',  # Channel name
    fmin=0,  # Lowest frequency of the filter bank.
    fmax=None,  # Highest frequency of the filter bank.
    impulse=False,  # Impulse response
    make_plot=True,  # Condition to produce plots
    max_duration=None,  # Maximum duration of the tile
    nchans=256,  # Total number of channels
    psd_estimation='median-mean',  # Average method
    psd_segment_length=60,  # Length of each segment in seconds
    psd_segment_stride=30,  # Separation between 2 consecutive segments in seconds
    station='station-name',  # Station name
    tile_fap=1e-7,  # Tile false alarm probability threshold in Gaussian noise.
    verbose=True,  # Print details
    window_fraction=0,  # Withening window fraction
    wtype='tukey'):  # Whitening type, can tukey or hann
    '''
    Perform excess-power search analysis on magnetic field data.
    This method will produce a bunch of time-frequency plots for every
    tile duration and bandwidth analysed as well as a XML file identifying
    all the triggers found in the selected data within the user-defined
    time range.

    Parameters
    ----------
    ts_data : TimeSeries
      Time Series from magnetic field data
    psd_segment_length : float
      Length of each segment in seconds
    psd_segment_stride : float
      Separation between 2 consecutive segments in seconds
    psd_estimation : string
      Average method
    window_fraction : float
      Withening window fraction
    tile_fap : float
      Tile false alarm probability threshold in Gaussian noise.
    nchans : int
      Total number of channels
    band : float
      Channel bandwidth
    fmin : float
      Lowest frequency of the filter bank.
    fmax : float
      Highest frequency of the filter bank

    Examples
    --------
    The program can be ran as an executable by using the ``excesspower`` command
    line as follows::

      excesspower --station "mainz01" \\
                  --start-time "2017-04-15-17-1" \\
                  --end-time "2017-04-15-18" \\
                  --rep "/Users/vincent/ASTRO/data/GNOME/GNOMEDrive/gnome/serverdata/" \\
                  --resample 512 \\
                  --verbose

    '''
    # Determine sampling rate based on extracted time series
    sample_rate = ts_data.sample_rate
    # Check if tile maximum frequency is not defined
    if fmax is None or fmax > sample_rate / 2.:
        # Set the tile maximum frequency equal to the Nyquist frequency
        # (i.e. half the sampling rate)
        fmax = sample_rate / 2.0
    # Check whether or not tile bandwidth and channel are defined
    if band is None and nchans is None:
        # Exit program with error message
        exit("Either bandwidth or number of channels must be specified...")
    else:
        # Check if tile maximum frequency larger than its minimum frequency
        assert fmax >= fmin
        # Define spectral band of data
        data_band = fmax - fmin
        # Check whether tile bandwidth or channel is defined
        if band is not None:
            # Define number of possible filter bands
            nchans = int(data_band / band)
        elif nchans is not None:
            # Define filter bandwidth
            band = data_band / nchans
            nchans -= 1
        # Check if number of channels is superior than unity
        assert nchans > 1
    # Print segment information
    if verbose: print '|- Estimating PSD from segments of',
    if verbose:
        print '%.2f s, with %.2f s stride...' % (psd_segment_length,
                                                 psd_segment_stride)
    # Convert time series as array of float
    data = ts_data.astype(numpy.float64)
    # Define segment length for PSD estimation in sample unit
    seg_len = int(psd_segment_length * sample_rate)
    # Define separation between consecutive segments in sample unit
    seg_stride = int(psd_segment_stride * sample_rate)
    # Minimum frequency of detectable signal in a segment
    delta_f = 1. / psd_segment_length
    # Calculate PSD length counting the zero frequency element
    fd_len = fmax / delta_f + 1
    # Calculate the overall PSD from individual PSD segments
    if impulse:
        # Produce flat data
        flat_data = numpy.ones(int(fd_len)) * 2. / fd_len
        # Create PSD frequency series
        fd_psd = types.FrequencySeries(flat_data, 1. / psd_segment_length,
                                       ts_data.start_time)
    else:
        # Create overall PSD using Welch's method
        fd_psd = psd.welch(data,
                           avg_method=psd_estimation,
                           seg_len=seg_len,
                           seg_stride=seg_stride)
    if make_plot:
        # Plot the power spectral density
        plot_spectrum(fd_psd)
    # We need this for the SWIG functions
    lal_psd = fd_psd.lal()
    # Create whitening window
    if verbose: print "|- Whitening window and spectral correlation..."
    if wtype == 'hann': window = lal.CreateHannREAL8Window(seg_len)
    elif wtype == 'tukey':
        window = lal.CreateTukeyREAL8Window(seg_len, window_fraction)
    else:
        raise ValueError("Can't handle window type %s" % wtype)
    # Create FFT plan
    fft_plan = lal.CreateForwardREAL8FFTPlan(len(window.data.data), 1)
    # Perform two point spectral correlation
    spec_corr = lal.REAL8WindowTwoPointSpectralCorrelation(window, fft_plan)
    # Determine length of individual filters
    filter_length = int(2 * band / fd_psd.delta_f) + 1
    # Initialise filter bank
    if verbose:
        print "|- Create bank of %i filters of %i Hz bandwidth..." % (
            nchans, filter_length)
    # Initialise array to store filter's frequency series and metadata
    lal_filters = []
    # Initialise array to store filter's time series
    fdb = []
    # Loop over the channels
    for i in range(nchans):
        # Define central position of the filter
        freq = fmin + band / 2 + i * band
        # Create excess power filter
        lal_filter = lalburst.CreateExcessPowerFilter(freq, band, lal_psd,
                                                      spec_corr)
        # Testing spectral correlation on filter
        #print lalburst.ExcessPowerFilterInnerProduct(lal_filter, lal_filter, spec_corr, None)
        # Append entire filter structure
        lal_filters.append(lal_filter)
        # Append filter's spectrum
        fdb.append(FrequencySeries.from_lal(lal_filter))
        #print fdb[0].frequencies
        #print fdb[0]
    if make_plot:
        # Plot filter bank
        plot_bank(fdb)
        # Convert filter bank from frequency to time domain
        if verbose:
            print "|- Convert all the frequency domain to the time domain..."
        tdb = []
        # Loop for each filter's spectrum
        for fdt in fdb:
            zero_padded = numpy.zeros(int((fdt.f0 / fdt.df).value) + len(fdt))
            st = int((fdt.f0 / fdt.df).value)
            zero_padded[st:st + len(fdt)] = numpy.real_if_close(fdt.value)
            n_freq = int(sample_rate / 2 / fdt.df.value) * 2
            tdt = numpy.fft.irfft(zero_padded, n_freq) * math.sqrt(sample_rate)
            tdt = numpy.roll(tdt, len(tdt) / 2)
            tdt = TimeSeries(tdt,
                             name="",
                             epoch=fdt.epoch,
                             sample_rate=sample_rate)
            tdb.append(tdt)
        # Plot time series filter
        plot_filters(tdb, fmin, band)
    # Computer whitened inner products of input filters with themselves
    #white_filter_ip = numpy.array([lalburst.ExcessPowerFilterInnerProduct(f, f, spec_corr, None) for f in lal_filters])
    # Computer unwhitened inner products of input filters with themselves
    #unwhite_filter_ip = numpy.array([lalburst.ExcessPowerFilterInnerProduct(f, f, spec_corr, lal_psd) for f in lal_filters])
    # Computer whitened filter inner products between input adjacent filters
    #white_ss_ip = numpy.array([lalburst.ExcessPowerFilterInnerProduct(f1, f2, spec_corr, None) for f1, f2 in zip(lal_filters[:-1], lal_filters[1:])])
    # Computer unwhitened filter inner products between input adjacent filters
    #unwhite_ss_ip = numpy.array([lalburst.ExcessPowerFilterInnerProduct(f1, f2, spec_corr, lal_psd) for f1, f2 in zip(lal_filters[:-1], lal_filters[1:])])
    # Check filter's bandwidth is equal to user defined channel bandwidth
    min_band = (len(lal_filters[0].data.data) - 1) * lal_filters[0].deltaF / 2
    assert min_band == band
    # Create an event list where all the triggers will be stored
    event_list = lsctables.New(lsctables.SnglBurstTable, [
        'start_time', 'start_time_ns', 'peak_time', 'peak_time_ns', 'duration',
        'bandwidth', 'central_freq', 'chisq_dof', 'confidence', 'snr',
        'amplitude', 'channel', 'ifo', 'process_id', 'event_id', 'search',
        'stop_time', 'stop_time_ns'
    ])
    # Create repositories to save TF and time series plots
    os.system('mkdir -p segments/time-frequency')
    os.system('mkdir -p segments/time-series')
    # Define time edges
    t_idx_min, t_idx_max = 0, seg_len
    # Loop over each segment
    while t_idx_max <= len(ts_data):
        # Define first and last timestamps of the block
        start_time = ts_data.start_time + t_idx_min / float(
            ts_data.sample_rate)
        end_time = ts_data.start_time + t_idx_max / float(ts_data.sample_rate)
        if verbose:
            print "\n|- Analyzing block %i to %i (%.2f percent)" % (
                start_time, end_time, 100 * float(t_idx_max) / len(ts_data))
        # Debug for impulse response
        if impulse:
            for i in range(t_idx_min, t_idx_max):
                ts_data[i] = 1000. if i == (t_idx_max + t_idx_min) / 2 else 0.
        # Model a withen time series for the block
        tmp_ts_data = types.TimeSeries(ts_data[t_idx_min:t_idx_max] *
                                       window.data.data,
                                       delta_t=1. / ts_data.sample_rate,
                                       epoch=start_time)
        # Save time series in relevant repository
        os.system('mkdir -p segments/%i-%i' % (start_time, end_time))
        if make_plot:
            # Plot time series
            plot_ts(tmp_ts_data,
                    fname='segments/time-series/%i-%i.png' %
                    (start_time, end_time))
        # Convert times series to frequency series
        fs_data = tmp_ts_data.to_frequencyseries()
        if verbose:
            print "|- Frequency series data has variance: %s" % fs_data.data.std(
            )**2
        # Whitening (FIXME: Whiten the filters, not the data)
        fs_data.data /= numpy.sqrt(fd_psd) / numpy.sqrt(2 * fd_psd.delta_f)
        if verbose:
            print "|- Whitened frequency series data has variance: %s" % fs_data.data.std(
            )**2
        if verbose: print "|- Create time-frequency plane for current block"
        # Return the complex snr, along with its associated normalization of the template,
        # matched filtered against the data
        #filter.matched_filter_core(types.FrequencySeries(tmp_filter_bank,delta_f=fd_psd.delta_f),
        #                           fs_data,h_norm=1,psd=fd_psd,low_frequency_cutoff=lal_filters[0].f0,
        #                           high_frequency_cutoff=lal_filters[0].f0+2*band)
        if verbose: print "|- Filtering all %d channels...\n" % nchans,
        # Initialise 2D zero array
        tmp_filter_bank = numpy.zeros(len(fd_psd), dtype=numpy.complex128)
        # Initialise 2D zero array for time-frequency map
        tf_map = numpy.zeros((nchans, seg_len), dtype=numpy.complex128)
        # Loop over all the channels
        for i in range(nchans):
            # Reset filter bank series
            tmp_filter_bank *= 0.0
            # Index of starting frequency
            f1 = int(lal_filters[i].f0 / fd_psd.delta_f)
            # Index of last frequency bin
            f2 = int((lal_filters[i].f0 + 2 * band) / fd_psd.delta_f) + 1
            # (FIXME: Why is there a factor of 2 here?)
            tmp_filter_bank[f1:f2] = lal_filters[i].data.data * 2
            # Define the template to filter the frequency series with
            template = types.FrequencySeries(tmp_filter_bank,
                                             delta_f=fd_psd.delta_f,
                                             copy=False)
            # Create filtered series
            filtered_series = filter.matched_filter_core(
                template,
                fs_data,
                h_norm=None,
                psd=None,
                low_frequency_cutoff=lal_filters[i].f0,
                high_frequency_cutoff=lal_filters[i].f0 + 2 * band)
            # Include filtered series in the map
            tf_map[i, :] = filtered_series[0].numpy()
        if make_plot:
            # Plot spectrogram
            plot_spectrogram(numpy.abs(tf_map).T,
                             dt=tmp_ts_data.delta_t,
                             df=band,
                             ymax=ts_data.sample_rate / 2.,
                             t0=start_time,
                             t1=end_time,
                             fname='segments/time-frequency/%i-%i.png' %
                             (start_time, end_time))
            plot_tiles_ts(numpy.abs(tf_map),
                          2,
                          1,
                          sample_rate=ts_data.sample_rate,
                          t0=start_time,
                          t1=end_time,
                          fname='segments/%i-%i/ts.png' %
                          (start_time, end_time))
            #plot_tiles_tf(numpy.abs(tf_map),2,1,ymax=ts_data.sample_rate/2,
            #              sample_rate=ts_data.sample_rate,t0=start_time,t1=end_time,
            #              fname='segments/%i-%i/tf.png'%(start_time,end_time))
        # Loop through powers of 2 up to number of channels
        for nc_sum in range(0, int(math.log(nchans, 2)))[::-1]:
            # Calculate total number of summed channels
            nc_sum = 2**nc_sum
            if verbose:
                print "\n\t|- Contructing tiles containing %d narrow band channels" % nc_sum
            # Compute full bandwidth of virtual channel
            df = band * nc_sum
            # Compute minimal signal's duration in virtual channel
            dt = 1.0 / (2 * df)
            # Compute under sampling rate
            us_rate = int(round(dt / ts_data.delta_t))
            if verbose:
                print "\t|- Undersampling rate for this level: %f" % (
                    ts_data.sample_rate / us_rate)
            if verbose: print "\t|- Calculating tiles..."
            # Clip the boundaries to remove window corruption
            clip_samples = int(psd_segment_length * window_fraction *
                               ts_data.sample_rate / 2)
            # Undersample narrow band channel's time series
            # Apply clipping condition because [0:-0] does not give the full array
            tf_map_temp = tf_map[:,clip_samples:-clip_samples:us_rate] \
                          if clip_samples > 0 else tf_map[:,::us_rate]
            # Initialise final tile time-frequency map
            tiles = numpy.zeros(((nchans + 1) / nc_sum, tf_map_temp.shape[1]))
            # Loop over tile index
            for i in xrange(len(tiles)):
                # Sum all inner narrow band channels
                ts_tile = numpy.absolute(tf_map_temp[nc_sum * i:nc_sum *
                                                     (i + 1)].sum(axis=0))
                # Define index of last narrow band channel for given tile
                n = (i + 1) * nc_sum - 1
                n = n - 1 if n == len(lal_filters) else n
                # Computer withened inner products of each input filter with itself
                mu_sq = nc_sum * lalburst.ExcessPowerFilterInnerProduct(
                    lal_filters[n], lal_filters[n], spec_corr, None)
                #kmax = nc_sum-1 if n==len(lal_filters) else nc_sum-2
                # Loop over the inner narrow band channels
                for k in xrange(0, nc_sum - 1):
                    # Computer whitened filter inner products between input adjacent filters
                    mu_sq += 2 * lalburst.ExcessPowerFilterInnerProduct(
                        lal_filters[n - k], lal_filters[n - 1 - k], spec_corr,
                        None)
                # Normalise tile's time series
                tiles[i] = ts_tile.real**2 / mu_sq
            if verbose: print "\t|- TF-plane is %dx%s samples" % tiles.shape
            if verbose:
                print "\t|- Tile energy mean %f, var %f" % (numpy.mean(tiles),
                                                            numpy.var(tiles))
            # Define maximum number of degrees of freedom and check it larger or equal to 2
            max_dof = 32 if max_duration == None else int(max_duration / dt)
            assert max_dof >= 2
            # Loop through multiple degrees of freedom
            for j in [2**l for l in xrange(0, int(math.log(max_dof, 2)))]:
                # Duration is fixed by the NDOF and bandwidth
                duration = j * dt
                if verbose: print "\n\t\t|- Summing DOF = %d ..." % (2 * j)
                if verbose:
                    print "\t\t|- Explore signal duration of %f s..." % duration
                # Construct filter
                sum_filter = numpy.array([1, 0] * (j - 1) + [1])
                # Calculate length of filtered time series
                tlen = tiles.shape[1] - sum_filter.shape[0] + 1
                # Initialise filtered time series array
                dof_tiles = numpy.zeros((tiles.shape[0], tlen))
                # Loop over tiles
                for f in range(tiles.shape[0]):
                    # Sum and drop correlate tiles
                    dof_tiles[f] = fftconvolve(tiles[f], sum_filter, 'valid')
                if verbose:
                    print "\t\t|- Summed tile energy mean: %f" % (
                        numpy.mean(dof_tiles))
                if verbose:
                    print "\t\t|- Variance tile energy: %f" % (
                        numpy.var(dof_tiles))
                if make_plot:
                    plot_spectrogram(
                        dof_tiles.T,
                        dt,
                        df,
                        ymax=ts_data.sample_rate / 2,
                        t0=start_time,
                        t1=end_time,
                        fname='segments/%i-%i/%02ichans_%02idof.png' %
                        (start_time, end_time, nc_sum, 2 * j))
                    plot_tiles_ts(
                        dof_tiles,
                        2 * j,
                        df,
                        sample_rate=ts_data.sample_rate / us_rate,
                        t0=start_time,
                        t1=end_time,
                        fname='segments/%i-%i/%02ichans_%02idof_ts.png' %
                        (start_time, end_time, nc_sum, 2 * j))
                    plot_tiles_tf(
                        dof_tiles,
                        2 * j,
                        df,
                        ymax=ts_data.sample_rate / 2,
                        sample_rate=ts_data.sample_rate / us_rate,
                        t0=start_time,
                        t1=end_time,
                        fname='segments/%i-%i/%02ichans_%02idof_tf.png' %
                        (start_time, end_time, nc_sum, 2 * j))
                threshold = scipy.stats.chi2.isf(tile_fap, j)
                if verbose:
                    print "\t\t|- Threshold for this level: %f" % threshold
                spant, spanf = dof_tiles.shape[1] * dt, dof_tiles.shape[0] * df
                if verbose:
                    print "\t\t|- Processing %.2fx%.2f time-frequency map." % (
                        spant, spanf)
                # Since we clip the data, the start time needs to be adjusted accordingly
                window_offset_epoch = fs_data.epoch + psd_segment_length * window_fraction / 2
                window_offset_epoch = LIGOTimeGPS(float(window_offset_epoch))
                for i, j in zip(*numpy.where(dof_tiles > threshold)):
                    event = event_list.RowType()
                    # The points are summed forward in time and thus a `summed point' is the
                    # sum of the previous N points. If this point is above threshold, it
                    # corresponds to a tile which spans the previous N points. However, the
                    # 0th point (due to the convolution specifier 'valid') is actually
                    # already a duration from the start time. All of this means, the +
                    # duration and the - duration cancels, and the tile 'start' is, by
                    # definition, the start of the time frequency map if j = 0
                    # FIXME: I think this needs a + dt/2 to center the tile properly
                    event.set_start(window_offset_epoch + float(j * dt))
                    event.set_stop(window_offset_epoch + float(j * dt) +
                                   duration)
                    event.set_peak(event.get_start() + duration / 2)
                    event.central_freq = lal_filters[
                        0].f0 + band / 2 + i * df + 0.5 * df
                    event.duration = duration
                    event.bandwidth = df
                    event.chisq_dof = 2 * duration * df
                    event.snr = math.sqrt(dof_tiles[i, j] / event.chisq_dof -
                                          1)
                    # FIXME: Magic number 0.62 should be determine empircally
                    event.confidence = -lal.LogChisqCCDF(
                        event.snr * 0.62, event.chisq_dof * 0.62)
                    event.amplitude = None
                    event.process_id = None
                    event.event_id = event_list.get_next_id()
                    event_list.append(event)
                for event in event_list[::-1]:
                    if event.amplitude != None:
                        continue
                    etime_min_idx = float(event.get_start()) - float(
                        fs_data.epoch)
                    etime_min_idx = int(etime_min_idx / tmp_ts_data.delta_t)
                    etime_max_idx = float(event.get_start()) - float(
                        fs_data.epoch) + event.duration
                    etime_max_idx = int(etime_max_idx / tmp_ts_data.delta_t)
                    # (band / 2) to account for sin^2 wings from finest filters
                    flow_idx = int((event.central_freq - event.bandwidth / 2 -
                                    (df / 2) - fmin) / df)
                    fhigh_idx = int((event.central_freq + event.bandwidth / 2 +
                                     (df / 2) - fmin) / df)
                    # TODO: Check that the undersampling rate is always commensurate
                    # with the indexing: that is to say that
                    # mod(etime_min_idx, us_rate) == 0 always
                    z_j_b = tf_map[flow_idx:fhigh_idx,
                                   etime_min_idx:etime_max_idx:us_rate]
                    # FIXME: Deal with negative hrss^2 -- e.g. remove the event
                    try:
                        event.amplitude = measure_hrss(
                            z_j_b, unwhite_filter_ip[flow_idx:fhigh_idx],
                            unwhite_ss_ip[flow_idx:fhigh_idx - 1],
                            white_ss_ip[flow_idx:fhigh_idx - 1],
                            fd_psd.delta_f, tmp_ts_data.delta_t,
                            len(lal_filters[0].data.data), event.chisq_dof)
                    except ValueError:
                        event.amplitude = 0
                if verbose:
                    print "\t\t|- Total number of events: %d" % len(event_list)
        t_idx_min += int(seg_len * (1 - window_fraction))
        t_idx_max += int(seg_len * (1 - window_fraction))
    setname = "MagneticFields"
    __program__ = 'pyburst_excesspower_gnome'
    start_time = LIGOTimeGPS(int(ts_data.start_time))
    end_time = LIGOTimeGPS(int(ts_data.end_time))
    inseg = segment(start_time, end_time)
    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    ifo = channel_name.split(":")[0]
    straindict = psd.insert_psd_option_group.__dict__
    proc_row = register_to_xmldoc(xmldoc,
                                  __program__,
                                  straindict,
                                  ifos=[ifo],
                                  version=git_version.id,
                                  cvs_repository=git_version.branch,
                                  cvs_entry_time=git_version.date)
    dt_stride = psd_segment_length
    sample_rate = ts_data.sample_rate
    # Amount to overlap successive blocks so as not to lose data
    window_overlap_samples = window_fraction * sample_rate
    outseg = inseg.contract(window_fraction * dt_stride / 2)
    # With a given dt_stride, we cannot process the remainder of this data
    remainder = math.fmod(abs(outseg), dt_stride * (1 - window_fraction))
    # ...so make an accounting of it
    outseg = segment(outseg[0], outseg[1] - remainder)
    ss = append_search_summary(xmldoc,
                               proc_row,
                               ifos=(station, ),
                               inseg=inseg,
                               outseg=outseg)
    for sb in event_list:
        sb.process_id = proc_row.process_id
        sb.search = proc_row.program
        sb.ifo, sb.channel = station, setname
    xmldoc.childNodes[0].appendChild(event_list)
    ifostr = ifo if isinstance(ifo, str) else "".join(ifo)
    st_rnd, end_rnd = int(math.floor(inseg[0])), int(math.ceil(inseg[1]))
    dur = end_rnd - st_rnd
    fname = "%s-excesspower-%d-%d.xml.gz" % (ifostr, st_rnd, dur)
    utils.write_filename(xmldoc, fname, gz=fname.endswith("gz"))
    plot_triggers(fname)
Exemple #17
0
    def to_coinc_xml_object(self, file_name):
        # FIXME: This function will only work with two ifos!!

        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        ifos = [ifo for ifo in self.sngl_files.keys()]
        proc_id = ligolw_process.register_to_xmldoc(
            outdoc,
            "pycbc",
            {},
            ifos=ifos,
            comment="",
            version=pycbc_version.git_hash,
            cvs_repository="pycbc/" + pycbc_version.git_branch,
            cvs_entry_time=pycbc_version.date,
        ).process_id

        search_summ_table = lsctables.New(lsctables.SearchSummaryTable)
        coinc_h5file = self.coinc_file.h5file
        start_time = coinc_h5file["segments"]["coinc"]["start"][:].min()
        end_time = coinc_h5file["segments"]["coinc"]["end"][:].max()
        num_trigs = len(self.sort_arr)
        search_summary = return_search_summary(start_time, end_time, num_trigs, ifos)
        search_summ_table.append(search_summary)
        outdoc.childNodes[0].appendChild(search_summ_table)

        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)
        time_slide_table = lsctables.New(lsctables.TimeSlideTable)

        # Set up time_slide table
        time_slide_id = lsctables.TimeSlideID(0)
        for ifo in ifos:
            time_slide_row = lsctables.TimeSlide()
            time_slide_row.instrument = ifo
            time_slide_row.time_slide_id = time_slide_id
            time_slide_row.offset = 0
            time_slide_row.process_id = proc_id
            time_slide_table.append(time_slide_row)

        # Set up coinc_definer table
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = "sngl_inspiral-sngl_inspiral coincidences"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)

        bank_col_names = ["mass1", "mass2", "spin1z", "spin2z"]
        bank_col_vals = {}
        for name in bank_col_names:
            bank_col_vals[name] = self.get_bankfile_array(name)

        coinc_event_names = ["ifar", "time1", "fap", "stat"]
        coinc_event_vals = {}
        for name in coinc_event_names:
            coinc_event_vals[name] = self.get_coincfile_array(name)

        sngl_col_names = [
            "snr",
            "chisq",
            "chisq_dof",
            "bank_chisq",
            "bank_chisq_dof",
            "cont_chisq",
            "cont_chisq_dof",
            "end_time",
            "template_duration",
            "coa_phase",
            "sigmasq",
        ]
        sngl_col_vals = {}
        for name in sngl_col_names:
            sngl_col_vals[name] = self.get_snglfile_array_dict(name)

        for idx, coinc_idx in enumerate(self.sort_arr):
            # Set up IDs and mapping values
            curr_tmplt_id = self.template_id[idx]
            coinc_id = lsctables.CoincID(idx)

            # Set up sngls
            # FIXME: As two-ifo is hardcoded loop over all ifos
            sngl_combined_mchirp = 0
            sngl_combined_mtot = 0
            for ifo in ifos:
                sngl_id = self.trig_id[ifo][idx]
                event_id = lsctables.SnglInspiralID(sngl_id)
                sngl = return_empty_sngl()
                sngl.event_id = event_id
                sngl.ifo = ifo
                curr_sngl_file = self.sngl_files[ifo].h5file[ifo]
                for name in sngl_col_names:
                    val = sngl_col_vals[name][ifo][idx]
                    setattr(sngl, name, val)
                for name in bank_col_names:
                    val = bank_col_vals[name][idx]
                    setattr(sngl, name, val)
                sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(sngl.mass1, sngl.mass2)
                sngl.mchirp, junk = pnutils.mass1_mass2_to_mchirp_eta(sngl.mass1, sngl.mass2)
                sngl.eff_distance = (sngl.sigmasq) ** 0.5 / sngl.snr
                sngl_combined_mchirp += sngl.mchirp
                sngl_combined_mtot += sngl.mtotal

                sngl_inspiral_table.append(sngl)

                # Set up coinc_map entry
                coinc_map_row = lsctables.CoincMap()
                coinc_map_row.table_name = "sngl_inspiral"
                coinc_map_row.coinc_event_id = coinc_id
                coinc_map_row.event_id = event_id
                coinc_event_map_table.append(coinc_map_row)

            sngl_combined_mchirp = sngl_combined_mchirp / len(ifos)
            sngl_combined_mtot = sngl_combined_mtot / len(ifos)

            # Set up coinc inspiral and coinc event tables
            coinc_event_row = lsctables.Coinc()
            coinc_inspiral_row = lsctables.CoincInspiral()
            coinc_event_row.coinc_def_id = coinc_def_id
            coinc_event_row.nevents = len(ifos)
            coinc_event_row.instruments = ",".join(ifos)
            coinc_inspiral_row.set_ifos(ifos)
            coinc_event_row.time_slide_id = time_slide_id
            coinc_event_row.process_id = proc_id
            coinc_event_row.coinc_event_id = coinc_id
            coinc_inspiral_row.coinc_event_id = coinc_id
            coinc_inspiral_row.mchirp = sngl_combined_mchirp
            coinc_inspiral_row.mass = sngl_combined_mtot
            coinc_inspiral_row.set_end(LIGOTimeGPS(coinc_event_vals["time1"][idx]))
            coinc_inspiral_row.snr = coinc_event_vals["stat"][idx]
            coinc_inspiral_row.false_alarm_rate = coinc_event_vals["fap"][idx]
            coinc_inspiral_row.combined_far = 1.0 / coinc_event_vals["ifar"][idx]
            # Transform to Hz
            coinc_inspiral_row.combined_far = coinc_inspiral_row.combined_far / YRJUL_SI
            coinc_event_row.likelihood = 0.0
            coinc_inspiral_row.minimum_duration = 0.0
            coinc_event_table.append(coinc_event_row)
            coinc_inspiral_table.append(coinc_inspiral_row)

        outdoc.childNodes[0].appendChild(coinc_def_table)
        outdoc.childNodes[0].appendChild(coinc_event_table)
        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(time_slide_table)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        ligolw_utils.write_filename(outdoc, file_name)
    if not opts.output_file:
      print >>sys.stderr, "Must specify an output file"
      sys.exit(1)

    if not opts.veto_file:
      print >>sys.stderr, "Must specify a veto file"
      sys.exit(1)

    trigs, livetime = get_loud_trigs(fList, opts.veto_file, opts.new_snr_cut)

    output_doc=ligolw.Document()
    output_doc.appendChild(ligolw.LIGO_LW())

    proc_id = process.register_to_xmldoc(output_doc,
                "get_loud_trigs", opts.__dict__, comment="", ifos=[""],
                version=git_version.id, cvs_repository=git_version.branch,
                cvs_entry_time=git_version.date).process_id

    vartable = lsctables.New(lsctables.SearchSummVarsTable)
    var = lsctables.SearchSummVars()
    var.process_id = proc_id
    var.value = livetime
    var.name = "livetime"
    var.string = "Single detector trigger collection time in seconds."
    var.search_summvar_id = vartable.next_id
    vartable.append(var)

    output_doc.childNodes[0].appendChild(vartable)
    output_doc.childNodes[0].appendChild(trigs)

    utils.write_filename(output_doc, opts.output_file, gz=opts.output_file.endswith("gz"))
# FIXME: sample rate could be a command line option; template duration and data
# duration should be determined from chirp time
sample_rate = 4096 # sample rate in Hz
template_duration = 128 # template duration in seconds
template_length = sample_rate * template_duration # template length in samples
data_duration = 512 # data duration in seconds
data_length = sample_rate * data_duration # data length in samples


# Open output file.
out_xmldoc = ligolw.Document()
out_xmldoc.appendChild(ligolw.LIGO_LW())

# Write process metadata to output file.
process = ligolw_process.register_to_xmldoc(out_xmldoc, parser.get_prog_name(),
    opts.__dict__, ifos=opts.detector, comment="Little hope!")

# Add search summary to output file.
all_time = segments.segment([glue.lal.LIGOTimeGPS(0), glue.lal.LIGOTimeGPS(2e9)])
search_summary_table = lsctables.New(lsctables.SearchSummaryTable)
out_xmldoc.childNodes[0].appendChild(search_summary_table)
summary = ligolw_search_summary.append_search_summary(out_xmldoc, process,
    inseg=all_time, outseg=all_time)

# Read template bank file.
progress.update(-1, 'reading ' + opts.template_bank)
xmldoc = ligolw_utils.load_filename(
    opts.template_bank, contenthandler=ligolw_bayestar.LSCTablesContentHandler)

# Determine the low frequency cutoff from the template bank file.
template_bank_f_low = ligolw_bayestar.get_temlate_bank_f_low(xmldoc)
#========================
# iterate through classifiers -> generate segments
#========================

### set up xml document
from glue.ligolw import ligolw
from glue.ligolw import utils as ligolw_utils
from glue.ligolw import lsctables

from glue.ligolw.utils import process

xmldoc = ligolw.Document()
xml_element = ligolw.LIGO_LW()
xmldoc.appendChild( xml_element )

proc_id = process.register_to_xmldoc( xmldoc, __prog__, opts.__dict__, version=__version__ ).process_id

segdef = lsctables.New( lsctables.SegmentDefTable, columns=["process_id", "segment_def_id", "ifos", "name", "version", "comment"] )
segsum = lsctables.New( lsctables.SegmentSumTable, columns=["process_id", "segment_sum_id", "start_time", "start_time_ns", "end_time", "end_time_ns", "comment", "segment_def_id"] )
segtab = lsctables.New( lsctables.SegmentTable, columns=["process_id", "segment_def_id", "segment_id", "start_time", "start_time_ns", "end_time", "end_time_ns"] )

xml_element.appendChild( segdef )
xml_element.appendChild( segsum )
xml_element.appendChild( segtab )

### iterate through classifiers
for classifier in opts.classifier:
    logger.info('Begin: generating segments for %s'%classifier)

    faps = fapsD[classifier]
    logger.info('  found %d files'%(len(faps)))
Exemple #21
0
    def __init__(self, ifos, coinc_results, **kwargs):
        """Initialize a ligolw xml representation of a zerolag trigger
        for upload from pycbc live to gracedb.

        Parameters
        ----------
        ifos: list of strs
            A list of the ifos pariticipating in this trigger
        coinc_results: dict of values
            A dictionary of values. The format is defined in
            pycbc/events/coinc.py and matches the on disk representation
            in the hdf file for this time.
        psds: dict of FrequencySeries
            Dictionary providing PSD estimates for all involved detectors.
        low_frequency_cutoff: float
            Minimum valid frequency for the PSD estimates.
        followup_data: dict of dicts, optional
            Dictionary providing SNR time series for each detector,
            to be used in sky localization with BAYESTAR. The format should
            be `followup_data['H1']['snr_series']`. More detectors can be
            present than given in `ifos`. If so, the extra detectors will only
            be used for sky localization.
        channel_names: dict of strings, optional
            Strain channel names for each detector.
            Will be recorded in the sngl_inspiral table.
        """
        self.template_id = coinc_results['foreground/%s/template_id' % ifos[0]]

        # remember if this should be marked as HWINJ
        self.is_hardware_injection = ('HWINJ' in coinc_results
                                      and coinc_results['HWINJ'])

        if 'followup_data' in kwargs:
            fud = kwargs['followup_data']
            assert len({fud[ifo]['snr_series'].delta_t for ifo in fud}) == 1, \
                    "delta_t for all ifos do not match"
            self.snr_series = {ifo: fud[ifo]['snr_series'] for ifo in fud}
            usable_ifos = fud.keys()
            followup_ifos = list(set(usable_ifos) - set(ifos))
        else:
            self.snr_series = None
            usable_ifos = ifos
            followup_ifos = []

        # Set up the bare structure of the xml document
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        proc_id = ligolw_process.register_to_xmldoc(
            outdoc, 'pycbc', {}, ifos=usable_ifos, comment='',
            version=pycbc_version.git_hash,
            cvs_repository='pycbc/'+pycbc_version.git_branch,
            cvs_entry_time=pycbc_version.date).process_id

        # Set up coinc_definer table
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincs"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)
        outdoc.childNodes[0].appendChild(coinc_def_table)

        # Set up coinc inspiral and coinc event tables
        coinc_id = lsctables.CoincID(0)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_event_row = lsctables.Coinc()
        coinc_event_row.coinc_def_id = coinc_def_id
        coinc_event_row.nevents = len(usable_ifos)
        coinc_event_row.instruments = ','.join(usable_ifos)
        coinc_event_row.time_slide_id = lsctables.TimeSlideID(0)
        coinc_event_row.process_id = proc_id
        coinc_event_row.coinc_event_id = coinc_id
        coinc_event_row.likelihood = 0.
        coinc_event_table.append(coinc_event_row)
        outdoc.childNodes[0].appendChild(coinc_event_table)

        # Set up sngls
        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)

        sngl_populated = None
        network_snrsq = 0
        for sngl_id, ifo in enumerate(usable_ifos):
            sngl = return_empty_sngl(nones=True)
            sngl.event_id = lsctables.SnglInspiralID(sngl_id)
            sngl.process_id = proc_id
            sngl.ifo = ifo
            names = [n.split('/')[-1] for n in coinc_results
                     if 'foreground/%s' % ifo in n]
            for name in names:
                val = coinc_results['foreground/%s/%s' % (ifo, name)]
                if name == 'end_time':
                    sngl.set_end(lal.LIGOTimeGPS(val))
                else:
                    try:
                        setattr(sngl, name, val)
                    except AttributeError:
                        pass
            if sngl.mass1 and sngl.mass2:
                sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                        sngl.mass1, sngl.mass2)
                sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                        sngl.mass1, sngl.mass2)
                sngl_populated = sngl
            if sngl.snr:
                sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
                network_snrsq += sngl.snr ** 2.0
            if 'channel_names' in kwargs and ifo in kwargs['channel_names']:
                sngl.channel = kwargs['channel_names'][ifo]
            sngl_inspiral_table.append(sngl)

            # Set up coinc_map entry
            coinc_map_row = lsctables.CoincMap()
            coinc_map_row.table_name = 'sngl_inspiral'
            coinc_map_row.coinc_event_id = coinc_id
            coinc_map_row.event_id = sngl.event_id
            coinc_event_map_table.append(coinc_map_row)

            if self.snr_series is not None:
                snr_series_to_xml(self.snr_series[ifo], outdoc, sngl.event_id)

        # for subthreshold detectors, respect BAYESTAR's assumptions and checks
        bayestar_check_fields = ('mass1 mass2 mtotal mchirp eta spin1x '
                                 'spin1y spin1z spin2x spin2y spin2z').split()
        subthreshold_sngl_time = numpy.mean(
                    [coinc_results['foreground/{}/end_time'.format(ifo)]
                     for ifo in ifos])
        for sngl in sngl_inspiral_table:
            if sngl.ifo in followup_ifos:
                for bcf in bayestar_check_fields:
                    setattr(sngl, bcf, getattr(sngl_populated, bcf))
                sngl.set_end(lal.LIGOTimeGPS(subthreshold_sngl_time))

        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        # Set up the coinc inspiral table
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_inspiral_row = lsctables.CoincInspiral()
        # This seems to be used as FAP, which should not be in gracedb
        coinc_inspiral_row.false_alarm_rate = 0
        coinc_inspiral_row.minimum_duration = 0.
        coinc_inspiral_row.set_ifos(usable_ifos)
        coinc_inspiral_row.coinc_event_id = coinc_id
        coinc_inspiral_row.mchirp = sngl_populated.mchirp
        coinc_inspiral_row.mass = sngl_populated.mtotal
        coinc_inspiral_row.end_time = sngl_populated.end_time
        coinc_inspiral_row.end_time_ns = sngl_populated.end_time_ns
        coinc_inspiral_row.snr = network_snrsq ** 0.5
        far = 1.0 / (lal.YRJUL_SI * coinc_results['foreground/ifar'])
        coinc_inspiral_row.combined_far = far
        coinc_inspiral_table.append(coinc_inspiral_row)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)

        # append the PSDs
        self.psds = kwargs['psds']
        psds_lal = {}
        for ifo in self.psds:
            psd = self.psds[ifo]
            kmin = int(kwargs['low_frequency_cutoff'] / psd.delta_f)
            fseries = lal.CreateREAL8FrequencySeries(
                "psd", psd.epoch, kwargs['low_frequency_cutoff'], psd.delta_f,
                lal.StrainUnit**2 / lal.HertzUnit, len(psd) - kmin)
            fseries.data.data = psd.numpy()[kmin:] / pycbc.DYN_RANGE_FAC ** 2.0
            psds_lal[ifo] = fseries
        make_psd_xmldoc(psds_lal, outdoc)

        self.outdoc = outdoc
        self.time = sngl_populated.get_end()
    workflow, scienceSegs, dfDir, segsList)

# This is needed to know what times will be analysed by daily ahope
# Template bank stuff
banks = _workflow.setup_tmpltbank_workflow(workflow, scienceSegs, datafinds,
                                           dfDir)
# Do matched-filtering
insps = _workflow.setup_matchedfltr_workflow(workflow, scienceSegs, datafinds,
                                             banks, dfDir)

# Now construct the summary XML file

outdoc = ligolw.Document()
outdoc.appendChild(ligolw.LIGO_LW())
# FIXME: PROGRAM NAME and dictionary of opts should be variables defined up above
proc_id = ligolw_process.register_to_xmldoc(outdoc, 'dayhopetest',
                                            vars(args)).process_id
for ifo in workflow.ifos:
    # Lets get the segment lists we need
    segIfoFiles = segsList.find_output_with_ifo(ifo)
    # SCIENCE
    sciSegFile = segIfoFiles.find_output_with_tag('SCIENCE')
    assert (len(sciSegFile) == 1)
    sciSegFile = sciSegFile[0]
    sciSegs = sciSegFile.segmentList
    # SCIENCE_OK
    sciokSegFile = segIfoFiles.find_output_with_tag('SCIENCE_OK')
    assert (len(sciokSegFile) == 1)
    sciokSegFile = sciokSegFile[0]
    sciokSegs = sciokSegFile.segmentList
    # SCIENCE_AVAILABLE
    sciavailableSegFile = segIfoFiles.find_output_with_tag('SCIENCE_AVAILABLE')
# BAYESTAR imports.
from lalinference.bayestar import ligolw as ligolw_bayestar
from lalinference.bayestar import timing

# Other imports.
import numpy as np
import scipy.linalg


# Open output file.
xmldoc = ligolw.Document()
xmldoc.appendChild(ligolw.LIGO_LW())

# Write process metadata to output file.
process = ligolw_process.register_to_xmldoc(xmldoc, parser.get_prog_name(),
    opts.__dict__)

# Create a SnglInspiral table and initialize its row ID counter.
sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
xmldoc.childNodes[0].appendChild(sngl_inspiral_table)
sngl_inspiral_table.set_next_id(lsctables.SnglInspiralID(0))

f_low = 10.
f_high = 2048.
df = 0.1

initial_mchirp = lalinspiral.sbank.tau0tau3.m1m2_to_mchirp(opts.initial_mass1, opts.initial_mass2)
initial_eta = opts.initial_mass1 * opts.initial_mass2 / (opts.initial_mass1 + opts.initial_mass2)**2
initial_chi = 0.
initial_chirp_times = lalsimulation.SimInspiralTaylorF2RedSpinChirpTimesFromMchirpEtaChi(initial_mchirp, initial_eta, initial_chi, f_low)
initial_theta0_theta3 = initial_chirp_times[:2]
Exemple #24
0
		if options.verbose:
			print >>sys.stderr, "warning: %s already processed," % (filename or "stdin"),
		if not options.force:
			if options.verbose:
				print >>sys.stderr, "skipping"
			continue
		if options.verbose:
			print >>sys.stderr, "continuing by --force"

	#
	# Add an entry to the process table.
	#

	process = ligolw_process.register_to_xmldoc(xmldoc, process_program_name, paramdict,
		comment = options.comment,
		version = __version__,
		cvs_repository = u"lscsoft",
		cvs_entry_time = __date__
	)

	#
	# Run coincidence algorithm.
	#

	burca.burca(
		xmldoc = xmldoc,
		process_id = process.process_id,
		EventListType = EventListType,
		CoincTables = CoincTables,
		coinc_definer_row = CoincDef,
		thresholds = options.threshold,
		ntuple_comparefunc = ntuple_comparefunc,
Exemple #25
0
def register_to_xmldoc(xmldoc, parser, opts, **kwargs):
    from glue.ligolw.utils import process
    params = {key: value.name if hasattr(value, 'read') else value
              for key, value in opts.__dict__.items()}
    return process.register_to_xmldoc(xmldoc, parser.prog, params)
        f_low, = f_lows
    except ValueError:
        raise ValueError(
            "sim_inspiral:f_lower columns are not unique, got values: "
            + ' '.join(f_lows))
else:
    f_low = opts.f_low

# Open output file.
out_xmldoc = ligolw.Document()
out_xmldoc.appendChild(ligolw.LIGO_LW())

# Write process metadata to output file. Masquerade as lalapps_tmpltbank and
# encode low frequency cutoff in command line arguments.
process = ligolw_process.register_to_xmldoc(out_xmldoc, "tmpltbank",
    dict(opts.__dict__, low_frequency_cutoff=f_low), ifos="H1",
    comment="Exact-match template bank")

# Record low-frequency cutoff in the SearchSummVars table.
search_summvars_table = lsctables.New(lsctables.SearchSummVarsTable)
out_xmldoc.childNodes[0].appendChild(search_summvars_table)
search_summvars = lsctables.SearchSummVars()
search_summvars.search_summvar_id = search_summvars_table.get_next_id()
search_summvars.process_id = process.process_id
search_summvars.name = "low-frequency cutoff"
search_summvars.string = None
search_summvars.value = f_low
search_summvars_table.append(search_summvars)

# Create a SnglInspiral table and initialize its row ID counter.
sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        # In the interest of not blocking later DAGs for completion in an
        # uberdag, this is now dependent on the SQL step
        pos_plot_node.add_parent(sql_node)

dag_name = opts.output_name
dag.set_dag_file(dag_name)
dag.write_concrete_dag()
if opts.write_script:
    dag.write_script()

print("Created a DAG named %s\n" % dag_name)
print("This will run %i instances of %s in parallel\n" %
      (len(tmplt_bnk), ile_sub_name))

# FIXME: Adjust name on command line
if use_bayespe_postproc:
    ppdag_name = "posterior_pp"
    ppdag.set_dag_file(ppdag_name)
    ppdag.add_maxjobs_category("ANALYSIS", MAXJOBS["ANALYSIS"])
    ppdag.add_maxjobs_category("POST", MAXJOBS["POST"])
    ppdag.write_concrete_dag()
    if opts.write_script:
        ppdag.write_script()

    print("Created a postprocessing DAG named %s\n" % ppdag_name)

xmldoc = ligolw.Document()
xmldoc.appendChild(ligolw.LIGO_LW())
process.register_to_xmldoc(xmldoc, sys.argv[0], opts.__dict__)
utils.write_filename(xmldoc, opts.output_name + ".xml.gz", gz=True)
    input_table = lsctables.SimInspiralTable.get_table(indoc)
    inputtabletype = lsctables.SimInspiralTable
  #
  #print tabletype
  length = len(input_table)
else:
  print ("Waning: No input table given to append to, will construct one from scratch")
  inputtabletype = lsctables.SimInspiralTable
  #raise IOError("Please give a table to add the information about NR waveforms to.")

# Re-write the input table files
# create a blank xml document and add the process id
outdoc = ligolw.Document()
outdoc.appendChild(ligolw.LIGO_LW())
proc_id = ligolw_process.register_to_xmldoc(outdoc, 
                PROGRAM_NAME, options.__dict__, ifos=["G1"],
                version=git_version.id, cvs_repository=git_version.branch,
                cvs_entry_time=git_version.date).process_id

out_table = lsctables.New(inputtabletype,columns=['mass1','mass2','mchirp','eta','spin1x','spin1y','spin1z','spin2x','spin2y','spin2z','inclination','polarization','latitude','longitude','bandpass','alpha','alpha1','alpha2','process_id','waveform','numrel_data','numrel_mode_min','numrel_mode_max','t_end_time','f_lower'])
outdoc.childNodes[0].appendChild(out_table)


if options.input_catalog is not None:
  # Fill in the INPUT table
  for point in input_table:
    if not os.path.exists( point.numrel_data ):
      print "waveform file %s for %s does NOT exist! " % \
              (point.numrel_data, point.waveform)
      if options.force_file_exists: 
        print "(SKIPPING)\n"
        continue
  fmm = interp1d( qmt, qmm )
  mismatches.append( [qmt, qmm, fmm] )

dicfmm = {}
for idx in range(len(mass_ratios)):
  dicfmm.update({mass_ratios[idx]:mismatches[idx][2]})
  

################### Process the bank amd write it to disk ############
subfile_name = options.output_bank
if options.verbose:
  print "Writing substitute-bank file %s" % subfile_name
out_subbank_doc = ligolw.Document()
out_subbank_doc.appendChild(ligolw.LIGO_LW())
out_proc_id = ligolw_process.register_to_xmldoc(out_subbank_doc,
    PROGRAM_NAME, options.__dict__, comment=options.comment,
    version=git_version.id, cvs_repository=git_version.branch,
    cvs_entry_time=git_version.date).process_id

# Use exactly the same columns as in the input bank table
tmp0 = in_bank_table[0]
cols_list = tmp0.__slots__
cols = []
for tmpc in cols_list:
  if hasattr(tmp0, tmpc):
    cols.append( tmpc )

if options.table == 'sim':
  out_subbank_table = lsctables.New(lsctables.SimInspiralTable,columns=cols)
else:
  out_subbank_table = lsctables.New(lsctables.SnglInspiralTable,columns=cols)
Exemple #30
0
(options, args) = parser.parse_args()

##############################################################################
# Sanity check of input arguments
if not options.ihope_cache:
  raise ValueError, "An ihope-cache file is required."
if not options.config_file:
  raise ValueError, "A config-file is required."
if not options.log_path:
  raise ValueError, "A log-path is required."

##############################################################################
# Create log file
logdoc = ligolw.Document()
logdoc.appendChild(ligolw.LIGO_LW())
proc_id = process.register_to_xmldoc(logdoc, __prog__, options.__dict__, version = git_version.id)

##############################################################################
# parse the ini file and initialize
cp = pipeline.DeepCopyableConfigParser()
cp.read(options.config_file)

tmp_space = cp.get('pipeline', 'node-tmp-dir')

experiment_start = options.gps_start_time
experiment_duration = str(int(options.gps_end_time) - int(options.gps_start_time))

try:
  do_cats = cp.get('pipeline', 'pipedown-cats')
  do_cats = do_cats.split(',')
except:
Exemple #31
0
def setup_analysislogging(workflow, segs_list, insps, args, output_dir,
                          program_name="workflow", tags=[]):
    """
    This module sets up the analysis logging xml file that contains the
    following information:

    * Command line arguments that the code was run with
    * Segment list of times marked as SCIENCE
    * Segment list of times marked as SCIENCE and "OK" ie. not CAT_1 vetoed
    * Segment list of times marked as SCIENCE_OK and present on the cluster
    * The times that will be analysed by the matched-filter jobs

    Parameters
    -----------
    workflow : pycbc.workflow.core.Workflow
        The Workflow instance.
    segs_list : pycbc.workflow.core.FileList
        A list of Files containing the information needed to generate the
        segments above. For segments generated at run time the associated
        segmentlist is a property of this object.
    insps : pycbc.workflow.core.FileList
        The output files from the matched-filtering module. Used to identify
        what times have been analysed in this workflow.
    output_dir : path
        Directory to output any files to.
    program_name : string (optional, default = "workflow")
        The program name to stick in the process/process_params tables.
    tags : list (optional, default = [])
        If given restrict to considering inspiral and segment files that
        are tagged with all tags in this list.
    """
    logging.info("Entering analysis logging module.")
    make_analysis_dir(output_dir)

    # Construct the summary XML file
    outdoc = ligolw.Document()
    outdoc.appendChild(ligolw.LIGO_LW())

    # Add process and process_params tables
    proc_id = process.register_to_xmldoc(outdoc, program_name,
                                            vars(args) ).process_id

    # Now add the various segment lists to this file
    summ_segs = segmentlist([workflow.analysis_time])
    
    # If tags is given filter by tags
    if tags:
        for tag in tags:
            segs_list = segs_list.find_output_with_tag(tag)
            insps = insps.find_output_with_tag(tag)

    for ifo in workflow.ifos:
        # Lets get the segment lists we need
        seg_ifo_files = segs_list.find_output_with_ifo(ifo)
        # SCIENCE
        sci_seg_file = seg_ifo_files.find_output_with_tag('SCIENCE')
        if len(sci_seg_file) == 1:
            sci_seg_file = sci_seg_file[0]
            sci_segs = sci_seg_file.segmentList
            sci_def_id = segmentdb_utils.add_to_segment_definer(outdoc, proc_id,
                                                   ifo, "CBC_WORKFLOW_SCIENCE", 0)
            segmentdb_utils.add_to_segment(outdoc, proc_id, sci_def_id,
                                                                      sci_segs)
            segmentdb_utils.add_to_segment_summary(outdoc, proc_id, sci_def_id,
                                                         summ_segs, comment='')
        elif sci_seg_file:
            # FIXME: While the segment module is still fractured (#127) this
            #        may not work. Please update when #127 is resolved
            pass
            #err_msg = "Got %d files matching %s and %s. Expected 1 or 0." \
            #          %(len(sci_seg_file), ifo, 'SCIENCE')
            #raise ValueError(err_msg)

        # SCIENCE_OK
        sci_ok_seg_file = seg_ifo_files.find_output_with_tag('SCIENCE_OK')
        if len(sci_ok_seg_file) == 1:
            sci_ok_seg_file = sci_ok_seg_file[0]
            sci_ok_segs = sci_ok_seg_file.segmentList
            sci_ok_def_id = segmentdb_utils.add_to_segment_definer(outdoc,
                                       proc_id, ifo, "CBC_WORKFLOW_SCIENCE_OK", 0)
            segmentdb_utils.add_to_segment(outdoc, proc_id, sci_ok_def_id,
                                                                   sci_ok_segs)
            segmentdb_utils.add_to_segment_summary(outdoc, proc_id,
                                          sci_ok_def_id, summ_segs, comment='')
        elif sci_ok_seg_file:
            # FIXME: While the segment module is still fractured (#127) this
            #        may not work. Please update when #127 is resolved
            pass
            #err_msg = "Got %d files matching %s and %s. Expected 1 or 0." \
            #          %(len(sci_ok_seg_file), ifo, 'SCIENCE_OK')
            #raise ValueError(err_msg)


        # SCIENCE_AVAILABLE
        sci_available_seg_file = seg_ifo_files.find_output_with_tag(\
                                                           'SCIENCE_AVAILABLE')
        if len(sci_available_seg_file) == 1:
            sci_available_seg_file = sci_available_seg_file[0]
            sci_available_segs = sci_available_seg_file.segmentList
            sci_available_def_id = segmentdb_utils.add_to_segment_definer(\
                        outdoc, proc_id, ifo, "CBC_WORKFLOW_SCIENCE_AVAILABLE", 0)
            segmentdb_utils.add_to_segment(outdoc, proc_id,
                                      sci_available_def_id, sci_available_segs)
            segmentdb_utils.add_to_segment_summary(outdoc, proc_id,
                                   sci_available_def_id, summ_segs, comment='')
        elif sci_available_seg_file:
            # FIXME: While the segment module is still fractured (#127) this
            #        may not work. Please update when #127 is resolved
            pass
            #err_msg = "Got %d files matching %s and %s. Expected 1 or 0." \
            #          %(len(sci_available_seg_file), ifo, 'SCIENCE_AVAILABLE')
            #raise ValueError(err_msg)

        # ANALYSABLE - This one needs to come from inspiral outs
        ifo_insps = insps.find_output_with_ifo(ifo)
        analysable_segs = ifo_insps.get_times_covered_by_files()

        analysable_def_id = segmentdb_utils.add_to_segment_definer(outdoc,
                                     proc_id, ifo, "CBC_WORKFLOW_ANALYSABLE", 0)
        segmentdb_utils.add_to_segment(outdoc, proc_id, analysable_def_id,
                                                               analysable_segs)
        segmentdb_utils.add_to_segment_summary(outdoc, proc_id,
                                      analysable_def_id, summ_segs, comment='')

    summ_file = File(workflow.ifos, "WORKFLOW_SUMMARY",
                     workflow.analysis_time, extension=".xml",
                     directory=output_dir)
    summ_file.PFN(summ_file.storage_path, site='local')
    utils.write_filename(outdoc, summ_file.storage_path)

    return FileList([summ_file])
Exemple #32
0
    def to_coinc_xml_object(self, file_name):
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        ifos = list(self.sngl_files.keys())
        proc_id = ligolw_process.register_to_xmldoc(outdoc, 'pycbc',
                     {}, ifos=ifos, comment='', version=pycbc_version.git_hash,
                     cvs_repository='pycbc/'+pycbc_version.git_branch,
                     cvs_entry_time=pycbc_version.date).process_id

        search_summ_table = lsctables.New(lsctables.SearchSummaryTable)
        coinc_h5file = self.coinc_file.h5file
        try:
            start_time = coinc_h5file['segments']['coinc']['start'][:].min()
            end_time = coinc_h5file['segments']['coinc']['end'][:].max()
        except KeyError:
            start_times = []
            end_times = []
            for ifo_comb in coinc_h5file['segments']:
                if ifo_comb == 'foreground_veto':
                    continue
                seg_group = coinc_h5file['segments'][ifo_comb]
                start_times.append(seg_group['start'][:].min())
                end_times.append(seg_group['end'][:].max())
            start_time = min(start_times)
            end_time = max(end_times)
        num_trigs = len(self.sort_arr)
        search_summary = return_search_summary(start_time, end_time,
                                               num_trigs, ifos)
        search_summ_table.append(search_summary)
        outdoc.childNodes[0].appendChild(search_summ_table)

        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)
        time_slide_table = lsctables.New(lsctables.TimeSlideTable)

        # Set up time_slide table
        time_slide_id = lsctables.TimeSlideID(0)
        for ifo in ifos:
            time_slide_row = lsctables.TimeSlide()
            time_slide_row.instrument = ifo
            time_slide_row.time_slide_id = time_slide_id
            time_slide_row.offset = 0
            time_slide_row.process_id = proc_id
            time_slide_table.append(time_slide_row)

        # Set up coinc_definer table
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = \
            "sngl_inspiral<-->sngl_inspiral coincidences"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)

        bank_col_names = ['mass1', 'mass2', 'spin1z', 'spin2z']
        bank_col_vals = {}
        for name in bank_col_names:
            bank_col_vals[name] = self.get_bankfile_array(name)

        coinc_event_names = ['ifar', 'time', 'fap', 'stat']
        coinc_event_vals = {}
        for name in coinc_event_names:
            if name == 'time':
                coinc_event_vals[name] = self.get_end_time()
            else:
                coinc_event_vals[name] = self.get_coincfile_array(name)

        sngl_col_names = ['snr', 'chisq', 'chisq_dof', 'bank_chisq',
                          'bank_chisq_dof', 'cont_chisq', 'cont_chisq_dof',
                          'end_time', 'template_duration', 'coa_phase',
                          'sigmasq']
        sngl_col_vals = {}
        for name in sngl_col_names:
            sngl_col_vals[name] = self.get_snglfile_array_dict(name)

        sngl_event_count = 0
        for idx in range(len(self.sort_arr)):
            # Set up IDs and mapping values
            coinc_id = lsctables.CoincID(idx)

            # Set up sngls
            sngl_mchirps = []
            sngl_mtots = []
            net_snrsq = 0
            triggered_ifos = []
            for ifo in ifos:
                # If this ifo is not participating in this coincidence then
                # ignore it and move on.
                if not sngl_col_vals['snr'][ifo][1][idx]:
                    continue
                triggered_ifos += [ifo]
                event_id = lsctables.SnglInspiralID(sngl_event_count)
                sngl_event_count += 1
                sngl = return_empty_sngl()
                sngl.event_id = event_id
                sngl.ifo = ifo
                net_snrsq += sngl_col_vals['snr'][ifo][0][idx]**2
                for name in sngl_col_names:
                    val = sngl_col_vals[name][ifo][0][idx]
                    if name == 'end_time':
                        sngl.set_end(LIGOTimeGPS(val))
                    else:
                        setattr(sngl, name, val)
                for name in bank_col_names:
                    val = bank_col_vals[name][idx]
                    setattr(sngl, name, val)
                sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                        sngl.mass1, sngl.mass2)
                sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                        sngl.mass1, sngl.mass2)
                sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
                # If exact match is not used, then take mean
                # masses from the single triggers
                sngl_mchirps += [sngl.mchirp]
                sngl_mtots += [sngl.mtotal]

                sngl_inspiral_table.append(sngl)

                # Set up coinc_map entry
                coinc_map_row = lsctables.CoincMap()
                coinc_map_row.table_name = 'sngl_inspiral'
                coinc_map_row.coinc_event_id = coinc_id
                coinc_map_row.event_id = event_id
                coinc_event_map_table.append(coinc_map_row)

            sngl_combined_mchirp = np.mean(sngl_mchirps)
            sngl_combined_mtot = np.mean(sngl_mtots)

            # Set up coinc inspiral and coinc event tables
            coinc_event_row = lsctables.Coinc()
            coinc_inspiral_row = lsctables.CoincInspiral()
            coinc_event_row.coinc_def_id = coinc_def_id
            coinc_event_row.nevents = len(triggered_ifos)
            coinc_event_row.instruments = ','.join(triggered_ifos)
            coinc_inspiral_row.set_ifos(triggered_ifos)
            coinc_event_row.time_slide_id = time_slide_id
            coinc_event_row.process_id = proc_id
            coinc_event_row.coinc_event_id = coinc_id
            coinc_inspiral_row.coinc_event_id = coinc_id
            coinc_inspiral_row.mchirp = sngl_combined_mchirp
            coinc_inspiral_row.mass = sngl_combined_mtot
            coinc_inspiral_row.set_end(
                LIGOTimeGPS(coinc_event_vals['time'][idx])
            )
            coinc_inspiral_row.snr = net_snrsq**0.5
            coinc_inspiral_row.false_alarm_rate = coinc_event_vals['fap'][idx]
            coinc_inspiral_row.combined_far = 1./coinc_event_vals['ifar'][idx]
            # Transform to Hz
            coinc_inspiral_row.combined_far = \
                                    coinc_inspiral_row.combined_far / YRJUL_SI
            coinc_event_row.likelihood = coinc_event_vals['stat'][idx]
            coinc_inspiral_row.minimum_duration = 0.
            coinc_event_table.append(coinc_event_row)
            coinc_inspiral_table.append(coinc_inspiral_row)

        outdoc.childNodes[0].appendChild(coinc_def_table)
        outdoc.childNodes[0].appendChild(coinc_event_table)
        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(time_slide_table)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        ligolw_utils.write_filename(outdoc, file_name)
Exemple #33
0
    del CMAP["mass2"]
    CMAP[("mass1", "mass2")] = ("mass1", "mass2")
    ar = numpy.random.random((len(CMAP), 10))
    samp_dict = dict(zip(CMAP, ar))
    ar = samp_dict[("mass1", "mass2")]
    samp_dict[("mass1", "mass2")] = numpy.array([ar, ar])
    del CMAP[("mass1", "mass2")]
    CMAP["mass1"] = "mass1"
    CMAP["mass2"] = "mass2"

    samp_dict["samp_n"] = numpy.array(range(0,10))
    CMAP["sample_n"] = "sample_n"
    
    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    process.register_to_xmldoc(xmldoc, sys.argv[0], {})

    append_samples_to_xmldoc(xmldoc, samp_dict)

    def gaussian(x, mu=0, std=1):
        return 1/numpy.sqrt(numpy.pi*2)/std * numpy.exp(-(x-mu)**2/2/std**2)

    m1m, m2m = 1.4, 1.5
    m1, m2 = numpy.random.random(2000).reshape(2,1000)*1.0+1.0
    loglikes = [gaussian(m1i, m1m)*gaussian(m2i, m2m) for m1i, m2i in zip(m1, m2)]
    #loglikelihood = - 7.5**2/2
    #append_likelihood_result_to_xmldoc(xmldoc, loglikelihood, **{"mass1": 1.4, "mass2": 1.4, "ifos": "H1,L1,V1"})
    for m1i, m2i, loglikelihood in zip(m1, m2, loglikes):
        append_likelihood_result_to_xmldoc(xmldoc, loglikelihood, **{"mass1": m1i, "mass2": m2i})

    from glue.ligolw import utils
Exemple #34
0
def register_to_xmldoc(xmldoc, parser, opts, **kwargs):
    from glue.ligolw.utils import process
    params = {key: _sanitize_arg_value_for_xmldoc(value)
              for key, value in opts.__dict__.items()}
    return process.register_to_xmldoc(xmldoc, parser.prog, params, **kwargs)
#                                     Main
#
# =============================================================================
#


options, filenames = parse_command_line()


if options.verbose:
	print >>sys.stderr, "time-frequency tiles have %g degrees of freedom" % (2 * options.delta_t * options.delta_f)


xmldoc = ligolw.Document()
xmldoc.appendChild(ligolw.LIGO_LW())
process = ligolw_process.register_to_xmldoc(xmldoc, u"lalapps_binj_pic", options.options_dict, version = git_version.version)
time_slide_table = xmldoc.childNodes[-1].appendChild(lsctables.TimeSlideTable.get_table(ligolw_utils.load_filename(options.time_slide_xml, verbose = options.verbose, contenthandler = LIGOLWContentHandler)))
time_slide_id = time_slide_table[0].time_slide_id
if options.verbose:
	print >>sys.stderr, "associating injections with time slide ID \"%s\":  %s" % (time_slide_id, time_slide_table.as_dict()[time_slide_id])
for row in time_slide_table:
	row.process_id = process.process_id
sim_burst_tbl = xmldoc.childNodes[-1].appendChild(lsctables.New(lsctables.SimBurstTable, ["process_id", "simulation_id", "time_slide_id", "waveform", "waveform_number", "ra", "dec", "psi", "time_geocent_gps", "time_geocent_gps_ns", "duration", "frequency", "bandwidth", "egw_over_rsquared", "pol_ellipse_angle", "pol_ellipse_e"]))


for filename in filenames:
	if options.verbose:
		print >>sys.stderr, "loading %s ..." % filename
	img = Image.open(filename)

	width, height = img.size
                  file=sys.stderr)
        if not options.force:
            if options.verbose:
                print("skipping", file=sys.stderr)
            continue
        if options.verbose:
            print("continuing by --force", file=sys.stderr)

    #
    # Add an entry to the process table.
    #

    process = ligolw_process.register_to_xmldoc(xmldoc,
                                                process_program_name,
                                                process_params,
                                                comment=options.comment,
                                                version=__version__,
                                                cvs_repository=u"lscsoft",
                                                cvs_entry_time=__date__)

    #
    # LAL writes all triggers with event_id = 0.  Detect this and barf
    # on it.
    #

    tbl = lsctables.SnglInspiralTable.get_table(xmldoc)
    assert len(set(tbl.getColumnByName("event_id"))) == len(
        tbl), "degenerate sngl_inspiral event_id detected"

    #
    # Extract veto segments if present.
Exemple #37
0
def output_sngl_inspiral_table(outputFile, tempBank, metricParams,
                               ethincaParams, programName="", optDict = None,
                               outdoc=None, **kwargs):
    """
    Function that converts the information produced by the various pyCBC bank
    generation codes into a valid LIGOLW xml file containing a sngl_inspiral
    table and outputs to file.
 
    Parameters
    -----------
    outputFile : string
        Name of the file that the bank will be written to
    tempBank : iterable
        Each entry in the tempBank iterable should be a sequence of
        [mass1,mass2,spin1z,spin2z] in that order.
    metricParams : metricParameters instance
        Structure holding all the options for construction of the metric
        and the eigenvalues, eigenvectors and covariance matrix
        needed to manipulate the space.
    ethincaParams: {ethincaParameters instance, None}
        Structure holding options relevant to the ethinca metric computation
        including the upper frequency cutoff to be used for filtering.
        NOTE: The computation is currently only valid for non-spinning systems
        and uses the TaylorF2 approximant.
    programName (key-word-argument) : string
        Name of the executable that has been run
    optDict (key-word argument) : dictionary
        Dictionary of the command line arguments passed to the program
    outdoc (key-word argument) : ligolw xml document
        If given add template bank to this representation of a xml document and
        write to disk. If not given create a new document.
    kwargs : key-word arguments
        All other key word arguments will be passed directly to 
        ligolw_process.register_to_xmldoc
    """
    if optDict is None:
        optDict = {}
    if outdoc is None:
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

    # get IFO to put in search summary table
    ifos = []
    if 'channel_name' in optDict.keys():
        if optDict['channel_name'] is not None:
            ifos = [optDict['channel_name'][0:2]]

    proc_id = ligolw_process.register_to_xmldoc(outdoc, programName, optDict,
                                                ifos=ifos, **kwargs).process_id
    sngl_inspiral_table = convert_to_sngl_inspiral_table(tempBank, proc_id)
    # Calculate Gamma components if needed
    if ethincaParams is not None:
        if ethincaParams.doEthinca:
            for sngl in sngl_inspiral_table:
                # Set tau_0 and tau_3 values needed for the calculation of
                # ethinca metric distances
                (sngl.tau0,sngl.tau3) = pnutils.mass1_mass2_to_tau0_tau3(
                    sngl.mass1, sngl.mass2, metricParams.f0)
                fMax_theor, GammaVals = calculate_ethinca_metric_comps(
                    metricParams, ethincaParams,
                    sngl.mass1, sngl.mass2, spin1z=sngl.spin1z,
                    spin2z=sngl.spin2z, full_ethinca=ethincaParams.full_ethinca)
                # assign the upper frequency cutoff and Gamma0-5 values
                sngl.f_final = fMax_theor
                for i in xrange(len(GammaVals)):
                    setattr(sngl, "Gamma"+str(i), GammaVals[i])
        # If Gamma metric components are not wanted, assign f_final from an
        # upper frequency cutoff specified in ethincaParams
        elif ethincaParams.cutoff is not None:
            for sngl in sngl_inspiral_table:
                sngl.f_final = pnutils.frequency_cutoff_from_name(
                    ethincaParams.cutoff,
                    sngl.mass1, sngl.mass2, sngl.spin1z, sngl.spin2z)

    # set per-template low-frequency cutoff
    if 'f_low_column' in optDict and 'f_low' in optDict and \
            optDict['f_low_column'] is not None:
        for sngl in sngl_inspiral_table:
            setattr(sngl, optDict['f_low_column'], optDict['f_low'])

    outdoc.childNodes[0].appendChild(sngl_inspiral_table)

    # get times to put in search summary table
    start_time = 0
    end_time = 0
    if 'gps_start_time' in optDict.keys() and 'gps_end_time' in optDict.keys():
        start_time = optDict['gps_start_time']
        end_time = optDict['gps_end_time']

    # make search summary table
    search_summary_table = lsctables.New(lsctables.SearchSummaryTable) 
    search_summary = return_search_summary(start_time, end_time,
                               len(sngl_inspiral_table), ifos, **kwargs)
    search_summary_table.append(search_summary)
    outdoc.childNodes[0].appendChild(search_summary_table)

    # write the xml doc to disk
    proctable = table.get_table(outdoc, lsctables.ProcessTable.tableName)
    ligolw_utils.write_filename(outdoc, outputFile,
                                gz=outputFile.endswith('.gz'))
else:
    raise IOError("Could not split mchirp into bins suitably")

if options.verbose:
    logging.info("Mchirp bin edges chosen are: {}".format(mc_bins_edges))
    sys.stdout.flush()
for i in range(len(mc_bins_edges) - 1):
    # create a blank xml document and add points that fall within the i'th bin
    outdoc = ligolw.Document()
    outdoc.appendChild(ligolw.LIGO_LW())
    new_inspiral_table = lsctables.New(tabletype,
                                       columns=template_bank_table.columnnames)
    outdoc.childNodes[0].appendChild(new_inspiral_table)

    out_proc_id = ligolw_process.register_to_xmldoc(
        outdoc, PROGRAM_NAME, options.__dict__,
        comment=options.comment).process_id

    for p in template_bank_table:
        if p.mchirp >= mc_bins_edges[i] and p.mchirp < mc_bins_edges[i + 1]:
            p.process_id = out_proc_id
            new_inspiral_table.append(p)

    if options.verbose:
        logging.info("\t {} templates in sub-bank {}.".format(\
          len(new_inspiral_table), i))
    # write the xml doc to disk
    proctable = table.get_table(outdoc, lsctables.ProcessTable.tableName)
    proctable[0].end_time = gpstime.GpsSecondsFromPyUTC(time.time())

    outname = options.named + '%06d.xml' % i
# Clear the statistics book-keeping object.
#


distributions = stringutils.StringCoincParamsDistributions()
segs = segments.segmentlistdict()


#
# Start output document
#


xmldoc = ligolw.Document()
xmldoc.appendChild(ligolw.LIGO_LW())
process = ligolw_process.register_to_xmldoc(xmldoc, program = u"lalapps_string_meas_likelihood", paramdict = paramdict, version = __version__, cvs_repository = "lscsoft", cvs_entry_time = __date__, comment = u"")
distributions.process_id = process.process_id


#
# Iterate over files
#


for n, filename in enumerate(filenames):
	#
	# Open the database file.
	#

	if options.verbose:
		print >>sys.stderr, "%d/%d: %s" % (n + 1, len(filenames), filename)
Exemple #40
0
                     dfDir, segsList)

# This is needed to know what times will be analysed by daily ahope
# Template bank stuff
banks = _workflow.setup_tmpltbank_workflow(workflow, scienceSegs, datafinds,
                                       dfDir)
# Do matched-filtering
insps = _workflow.setup_matchedfltr_workflow(workflow, scienceSegs, datafinds,
                                         banks, dfDir)

# Now construct the summary XML file

outdoc = ligolw.Document()
outdoc.appendChild(ligolw.LIGO_LW())
# FIXME: PROGRAM NAME and dictionary of opts should be variables defined up above
proc_id = ligolw_process.register_to_xmldoc(outdoc, 'dayhopetest',
                                            vars(args) ).process_id
for ifo in workflow.ifos:
    # Lets get the segment lists we need
    segIfoFiles = segsList.find_output_with_ifo(ifo)
    # SCIENCE
    sciSegFile = segIfoFiles.find_output_with_tag('SCIENCE')
    assert(len(sciSegFile) == 1)
    sciSegFile = sciSegFile[0]
    sciSegs = sciSegFile.segmentList
    # SCIENCE_OK
    sciokSegFile = segIfoFiles.find_output_with_tag('SCIENCE_OK')
    assert(len(sciokSegFile) == 1)
    sciokSegFile = sciokSegFile[0]
    sciokSegs = sciokSegFile.segmentList
    # SCIENCE_AVAILABLE
    sciavailableSegFile = segIfoFiles.find_output_with_tag('SCIENCE_AVAILABLE')
            lnL[i] = factored_likelihood.factored_log_likelihood_time_marginalized(tvals, P, rholms_intp, rholms, cross_terms, det_epochs, opts.l_max,interpolate=opts.interpolate_time)
            i+=1
    
        return numpy.exp(lnL)

    res, var, neff, dict_return = sampler.integrate(likelihood_function, *unpinned_params, **pinned_params)

print " lnLmarg is ", numpy.log(res), " with expected relative error ", numpy.sqrt(var)/res
print " note neff is ", neff

# FIXME: This is turning into a mess
if opts.output_file:
    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    process.register_to_xmldoc(xmldoc, sys.argv[0], opts.__dict__)
    result_dict = {"mass1": opts.mass1, "mass2": opts.mass2, "event_duration": numpy.sqrt(var)/res, "ttotal": sampler.ntotal}
    if opts.spin1z is not None or sngl_inspiral_table:
        result_dict["spin1z"] = opts.spin1z or 0.0
    if opts.spin2z is not None or sngl_inspiral_table:
        result_dict["spin2z"] = opts.spin2z or 0.0
    if opts.eff_lambda is not None:
        result_dict["psi0"] = opts.eff_lambda
    if opts.deff_lambda is not None:
        result_dict["psi3"] = opts.deff_lambda

    xmlutils.append_likelihood_result_to_xmldoc(xmldoc, numpy.log(res), neff=neff, **result_dict)
    utils.write_filename(xmldoc, opts.output_file, gz=opts.output_file.endswith(".gz"))
    if opts.save_samples:
        samples = sampler._rvs
        samples["distance"] = samples["distance"]
# iterate through classifiers -> generate segments
#========================

### set up xml document
from glue.ligolw import ligolw
from glue.ligolw import utils as ligolw_utils
from glue.ligolw import lsctables

from glue.ligolw.utils import process

xmldoc = ligolw.Document()
xml_element = ligolw.LIGO_LW()
xmldoc.appendChild(xml_element)

proc_id = process.register_to_xmldoc(xmldoc,
                                     __prog__,
                                     opts.__dict__,
                                     version=__version__).process_id

segdef = lsctables.New(lsctables.SegmentDefTable,
                       columns=[
                           "process_id", "segment_def_id", "ifos", "name",
                           "version", "comment"
                       ])
segsum = lsctables.New(lsctables.SegmentSumTable,
                       columns=[
                           "process_id", "segment_sum_id", "start_time",
                           "start_time_ns", "end_time", "end_time_ns",
                           "comment", "segment_def_id"
                       ])
segtab = lsctables.New(lsctables.SegmentTable,
                       columns=[
import lalsimulation

# Other imports.
import numpy as np
from scipy import linalg

# BAYESTAR imports.
from lalinference import bayestar.ligolw


# Read input file.
xmldoc = ligolw_utils.load_filename(,
    infilename, contenthandler=bayestar.ligolw.LSCTablesContentHandler)

# Write process metadata to output file.
process = ligolw_process.register_to_xmldoc(xmldoc, parser.get_prog_name(),
    opts.__dict__)

# Determine the low frequency cutoff from the template bank file.
f_low = bayestar.ligolw.get_template_bank_f_low(xmldoc)

# Get the SnglInspiral table.
sngl_inspiral_table = ligolw_table.get_table(xmldoc,
    lsctables.SnglInspiralTable.tableName)

# Determine central values of intrinsic parameters.
mchirp0 = lalinspiral.sbank.tau0tau3.m1m2_to_mchirp(opts.mass1, opts.mass2)
eta0 = opts.mass1 * opts.mass2 / np.square(opts.mass1 + opts.mass2)
chi0 = 0.

# Transform to chirp times.
thetas_0 = lalsimulation.SimInspiralTaylorF2RedSpinChirpTimesFromMchirpEtaChi(
#

# FIXME:  don't hard-code instruments
distributions = stringutils.StringCoincParamsDistributions(["H1", "L1", "V1"])
segs = segments.segmentlistdict()

#
# Start output document
#

xmldoc = ligolw.Document()
xmldoc.appendChild(ligolw.LIGO_LW())
process = ligolw_process.register_to_xmldoc(
    xmldoc,
    program=u"lalapps_string_meas_likelihood",
    paramdict=paramdict,
    version=__version__,
    cvs_repository="lscsoft",
    cvs_entry_time=__date__,
    comment=u"")

#
# Iterate over files
#

for n, filename in enumerate(filenames):
    #
    # Open the database file.
    #

    if options.verbose:
        print >> sys.stderr, "%d/%d: %s" % (n + 1, len(filenames), filename)
from lalinference.bayestar import filter
from lalinference.bayestar import timing

# Other imports.
import numpy as np


progress = pylal.progress.ProgressBar()

# Open output file.
progress.update(-1, 'setting up output document')
out_xmldoc = ligolw.Document()
out_xmldoc.appendChild(ligolw.LIGO_LW())

# Write process metadata to output file.
process = ligolw_process.register_to_xmldoc(out_xmldoc, parser.get_prog_name(),
    opts.__dict__, ifos=opts.detector, comment="Simulated coincidences")

# Add search summary to output file.
all_time = segments.segment(
    [glue.lal.LIGOTimeGPS(0), glue.lal.LIGOTimeGPS(2e9)])
search_summary_table = lsctables.New(lsctables.SearchSummaryTable)
out_xmldoc.childNodes[0].appendChild(search_summary_table)
summary = ligolw_search_summary.append_search_summary(out_xmldoc, process,
    inseg=all_time, outseg=all_time)

# Read PSDs.
progress.update(-1, 'reading ' + opts.reference_psd)
xmldoc = ligolw_utils.load_filename(
    opts.reference_psd, contenthandler=lal.series.PSDContentHandler)
psds = lal.series.read_psd_xmldoc(xmldoc)
psds = dict(
Exemple #46
0
    def __init__(self, ifos, coinc_results):
        """Initialize a ligolw xml representation of a zerolag trigger
        for upload from pycbc live to gracedb.

        Parameters
        ----------
        ifos: list of strs
            A list of the ifos pariticipating in this trigger
        coinc_results: dict of values
            A dictionary of values. The format is define
            in pycbc/events/coinc.py
        and matches the on disk representation in the hdf file for this time.
        """
        # remember if this should be marked as HWINJ
        self.is_hardware_injection = False
        if 'HWINJ' in coinc_results:
            self.is_hardware_injection = True

        # Set up the bare structure of the xml document
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        proc_id = ligolw_process.register_to_xmldoc(
            outdoc, 'pycbc',
            {}, ifos=ifos, comment='', version=pycbc_version.git_hash,
            cvs_repository='pycbc/'+pycbc_version.git_branch,
            cvs_entry_time=pycbc_version.date).process_id

        # Set up coinc_definer table
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincs"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)
        outdoc.childNodes[0].appendChild(coinc_def_table)

        # Set up coinc inspiral and coinc event tables
        coinc_id = lsctables.CoincID(0)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_event_row = lsctables.Coinc()
        coinc_event_row.coinc_def_id = coinc_def_id
        coinc_event_row.nevents = len(ifos)
        coinc_event_row.instruments = ','.join(ifos)
        coinc_event_row.time_slide_id = lsctables.TimeSlideID(0)
        coinc_event_row.process_id = proc_id
        coinc_event_row.coinc_event_id = coinc_id
        coinc_event_row.likelihood = 0.
        coinc_event_table.append(coinc_event_row)
        outdoc.childNodes[0].appendChild(coinc_event_table)

        # Set up sngls
        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)

        sngl_id = 0
        for ifo in ifos:
            names = [n.split('/')[-1] for n in coinc_results
                     if 'foreground/%s' % ifo in n]
            sngl_id += 1
            sngl = return_empty_sngl()
            sngl.event_id = lsctables.SnglInspiralID(sngl_id)
            sngl.ifo = ifo
            for name in names:
                val = coinc_results['foreground/%s/%s' % (ifo, name)]
                if name == 'end_time':
                    sngl.set_end(LIGOTimeGPS(val))
                else:
                    try:
                        setattr(sngl, name, val)
                    except AttributeError:
                        pass
            sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                    sngl.mass1, sngl.mass2)
            sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                    sngl.mass1, sngl.mass2)
            sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
            sngl_inspiral_table.append(sngl)

            # Set up coinc_map entry
            coinc_map_row = lsctables.CoincMap()
            coinc_map_row.table_name = 'sngl_inspiral'
            coinc_map_row.coinc_event_id = coinc_id
            coinc_map_row.event_id = sngl.event_id
            coinc_event_map_table.append(coinc_map_row)

        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        # Set up the coinc inspiral table
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_inspiral_row = lsctables.CoincInspiral()
        # This seems to be used as FAP, which should not be in gracedb
        coinc_inspiral_row.false_alarm_rate = 0
        coinc_inspiral_row.minimum_duration = 0.
        coinc_inspiral_row.set_ifos(ifos)
        coinc_inspiral_row.coinc_event_id = coinc_id
        coinc_inspiral_row.mchirp = sngl.mchirp
        coinc_inspiral_row.mass = sngl.mtotal
        coinc_inspiral_row.end_time = sngl.end_time
        coinc_inspiral_row.end_time_ns = sngl.end_time_ns
        coinc_inspiral_row.snr = coinc_results['foreground/stat']
        far = 1.0 / (YRJUL_SI * coinc_results['foreground/ifar'])
        coinc_inspiral_row.combined_far = far
        coinc_inspiral_table.append(coinc_inspiral_row)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)
        self.outdoc = outdoc
Exemple #47
0
    def to_coinc_xml_object(self, file_name):
        # FIXME: This function will only work with two ifos!!

        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        ifos = [ifo for ifo in self.sngl_files.keys()]
        proc_id = ligolw_process.register_to_xmldoc(outdoc, 'pycbc',
                     {}, ifos=ifos, comment='', version=pycbc_version.git_hash,
                     cvs_repository='pycbc/'+pycbc_version.git_branch,
                     cvs_entry_time=pycbc_version.date).process_id

        search_summ_table = lsctables.New(lsctables.SearchSummaryTable)
        coinc_h5file = self.coinc_file.h5file
        start_time = coinc_h5file['segments']['coinc']['start'][:].min()
        end_time = coinc_h5file['segments']['coinc']['end'][:].max()
        num_trigs = len(self.sort_arr)
        search_summary = return_search_summary(start_time, end_time,
                                                 num_trigs, ifos)
        search_summ_table.append(search_summary)
        outdoc.childNodes[0].appendChild(search_summ_table)

        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)
        time_slide_table = lsctables.New(lsctables.TimeSlideTable)

        # Set up time_slide table
        time_slide_id = lsctables.TimeSlideID(0)
        for ifo in ifos:
            time_slide_row = lsctables.TimeSlide()
            time_slide_row.instrument = ifo
            time_slide_row.time_slide_id = time_slide_id
            time_slide_row.offset = 0
            time_slide_row.process_id = proc_id
            time_slide_table.append(time_slide_row)

        # Set up coinc_definer table
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincidences"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)

        bank_col_names = ['mass1', 'mass2', 'spin1z', 'spin2z']
        bank_col_vals = {}
        for name in bank_col_names:
            bank_col_vals[name] = self.get_bankfile_array(name)

        coinc_event_names = ['ifar', 'time1', 'fap', 'stat']
        coinc_event_vals = {}
        for name in coinc_event_names:
            coinc_event_vals[name] = self.get_coincfile_array(name)

        sngl_col_names = ['snr', 'chisq', 'chisq_dof', 'bank_chisq',
                          'bank_chisq_dof', 'cont_chisq', 'cont_chisq_dof',
                          'end_time', 'template_duration', 'coa_phase',
                          'sigmasq']
        sngl_col_vals = {}
        for name in sngl_col_names:
            sngl_col_vals[name] = self.get_snglfile_array_dict(name)

        for idx in xrange(len(self.sort_arr)):
            # Set up IDs and mapping values
            coinc_id = lsctables.CoincID(idx)

            # Set up sngls
            # FIXME: As two-ifo is hardcoded loop over all ifos
            sngl_combined_mchirp = 0
            sngl_combined_mtot = 0
            for ifo in ifos:
                sngl_id = self.trig_id[ifo][idx]
                event_id = lsctables.SnglInspiralID(sngl_id)
                sngl = return_empty_sngl()
                sngl.event_id = event_id
                sngl.ifo = ifo
                for name in sngl_col_names:
                    val = sngl_col_vals[name][ifo][idx]
                    if name == 'end_time':
                        sngl.set_end(LIGOTimeGPS(val))
                    else:
                        setattr(sngl, name, val)
                for name in bank_col_names:
                    val = bank_col_vals[name][idx]
                    setattr(sngl, name, val)
                sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                        sngl.mass1, sngl.mass2)
                sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                        sngl.mass1, sngl.mass2)
                sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
                sngl_combined_mchirp += sngl.mchirp
                sngl_combined_mtot += sngl.mtotal

                sngl_inspiral_table.append(sngl)

                # Set up coinc_map entry
                coinc_map_row = lsctables.CoincMap()
                coinc_map_row.table_name = 'sngl_inspiral'
                coinc_map_row.coinc_event_id = coinc_id
                coinc_map_row.event_id = event_id
                coinc_event_map_table.append(coinc_map_row)

            sngl_combined_mchirp = sngl_combined_mchirp / len(ifos)
            sngl_combined_mtot = sngl_combined_mtot / len(ifos)

            # Set up coinc inspiral and coinc event tables
            coinc_event_row = lsctables.Coinc()
            coinc_inspiral_row = lsctables.CoincInspiral()
            coinc_event_row.coinc_def_id = coinc_def_id
            coinc_event_row.nevents = len(ifos)
            coinc_event_row.instruments = ','.join(ifos)
            coinc_inspiral_row.set_ifos(ifos)
            coinc_event_row.time_slide_id = time_slide_id
            coinc_event_row.process_id = proc_id
            coinc_event_row.coinc_event_id = coinc_id
            coinc_inspiral_row.coinc_event_id = coinc_id
            coinc_inspiral_row.mchirp = sngl_combined_mchirp
            coinc_inspiral_row.mass = sngl_combined_mtot
            coinc_inspiral_row.set_end(\
                                   LIGOTimeGPS(coinc_event_vals['time1'][idx]))
            coinc_inspiral_row.snr = coinc_event_vals['stat'][idx]
            coinc_inspiral_row.false_alarm_rate = coinc_event_vals['fap'][idx]
            coinc_inspiral_row.combined_far = 1./coinc_event_vals['ifar'][idx]
            # Transform to Hz
            coinc_inspiral_row.combined_far = \
                                    coinc_inspiral_row.combined_far / YRJUL_SI
            coinc_event_row.likelihood = 0.
            coinc_inspiral_row.minimum_duration = 0.
            coinc_event_table.append(coinc_event_row)
            coinc_inspiral_table.append(coinc_inspiral_row)

        outdoc.childNodes[0].appendChild(coinc_def_table)
        outdoc.childNodes[0].appendChild(coinc_event_table)
        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(time_slide_table)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        ligolw_utils.write_filename(outdoc, file_name)
    # Dump data: p(<x)
    with open(fnameBase + "-pp-data.dat", 'w') as f:
        for key in ['ra', 'dec', 'tref', 'phi', 'incl', 'psi', 'dist', 'lnL']:
            f.write(key + " " + str(ppdata[key][0]) + ' ' +
                    str(ppdata[key][1]) + '\n')

# Save the outputs in CP's format, for comparison.  NOT YET ACTIVE CODE -- xmlutils has a bug on master (lacking terms in dictionary)
if True:  # opts.points_file_base:
    print("==== Exporting to xml: <base>.xml.gz =====")
    xmldoc = ligolw.Document()
    xmldoc.appendChild(ligolw.LIGO_LW())
    opts.NR_template_param = ""
    #    process.register_to_xmldoc(xmldoc, sys.argv[0], opts.__dict__)    # the process-params generation has not been reliable
    process.register_to_xmldoc(
        xmldoc, sys.argv[0],
        {})  # the process-params generation has not been reliable
    samples = {}
    samples["distance"] = ret[:, -3 - 1]  #retNiceIndexed['dist']
    samples["t_ref"] = ret[:, -3 - 5]  #retNiceIndexed['tref']
    samples["polarization"] = ret[:, -3 - 1]  #retNiceIndexed['psi']
    samples["coa_phase"] = ret[:, -3 - 4]  #retNiceIndexed['phi']
    samples["latitude"] = retNiceIndexed['dec']
    samples["longitude"] = retNiceIndexed['ra']
    samples["inclination"] = retNiceIndexed['incl']
    samples["loglikelihood"] = ret[:, -1]  #alpha1
    samples["joint_prior"] = ret[:, -3]  #alpha2
    samples["joint_s_prior"] = ret[:, -2]  #alpha3
    # samples = sampler._rvs
    # samples["distance"] = samples["distance"]
    # samples["polarization"] = samples["psi"]
def output_sngl_inspiral_table(outputFile, tempBank, metricParams,
                               ethincaParams, programName="", optDict = None,
                               outdoc=None, **kwargs):
    """
    Function that converts the information produced by the various pyCBC bank
    generation codes into a valid LIGOLW xml file containing a sngl_inspiral
    table and outputs to file.

    Parameters
    -----------
    outputFile : string
        Name of the file that the bank will be written to
    tempBank : iterable
        Each entry in the tempBank iterable should be a sequence of
        [mass1,mass2,spin1z,spin2z] in that order.
    metricParams : metricParameters instance
        Structure holding all the options for construction of the metric
        and the eigenvalues, eigenvectors and covariance matrix
        needed to manipulate the space.
    ethincaParams: {ethincaParameters instance, None}
        Structure holding options relevant to the ethinca metric computation
        including the upper frequency cutoff to be used for filtering.
        NOTE: The computation is currently only valid for non-spinning systems
        and uses the TaylorF2 approximant.
    programName (key-word-argument) : string
        Name of the executable that has been run
    optDict (key-word argument) : dictionary
        Dictionary of the command line arguments passed to the program
    outdoc (key-word argument) : ligolw xml document
        If given add template bank to this representation of a xml document and
        write to disk. If not given create a new document.
    kwargs : key-word arguments
        All other key word arguments will be passed directly to
        ligolw_process.register_to_xmldoc
    """
    if optDict is None:
        optDict = {}
    if outdoc is None:
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

    # get IFO to put in search summary table
    ifos = []
    if 'channel_name' in optDict.keys():
        if optDict['channel_name'] is not None:
            ifos = [optDict['channel_name'][0:2]]

    proc_id = ligolw_process.register_to_xmldoc(outdoc, programName, optDict,
                                                ifos=ifos, **kwargs).process_id
    sngl_inspiral_table = convert_to_sngl_inspiral_table(tempBank, proc_id)
    # Calculate Gamma components if needed
    if ethincaParams is not None:
        if ethincaParams.doEthinca:
            for sngl in sngl_inspiral_table:
                # Set tau_0 and tau_3 values needed for the calculation of
                # ethinca metric distances
                (sngl.tau0,sngl.tau3) = pnutils.mass1_mass2_to_tau0_tau3(
                    sngl.mass1, sngl.mass2, metricParams.f0)
                fMax_theor, GammaVals = calculate_ethinca_metric_comps(
                    metricParams, ethincaParams,
                    sngl.mass1, sngl.mass2, spin1z=sngl.spin1z,
                    spin2z=sngl.spin2z, full_ethinca=ethincaParams.full_ethinca)
                # assign the upper frequency cutoff and Gamma0-5 values
                sngl.f_final = fMax_theor
                for i in range(len(GammaVals)):
                    setattr(sngl, "Gamma"+str(i), GammaVals[i])
        # If Gamma metric components are not wanted, assign f_final from an
        # upper frequency cutoff specified in ethincaParams
        elif ethincaParams.cutoff is not None:
            for sngl in sngl_inspiral_table:
                sngl.f_final = pnutils.frequency_cutoff_from_name(
                    ethincaParams.cutoff,
                    sngl.mass1, sngl.mass2, sngl.spin1z, sngl.spin2z)

    # set per-template low-frequency cutoff
    if 'f_low_column' in optDict and 'f_low' in optDict and \
            optDict['f_low_column'] is not None:
        for sngl in sngl_inspiral_table:
            setattr(sngl, optDict['f_low_column'], optDict['f_low'])

    outdoc.childNodes[0].appendChild(sngl_inspiral_table)

    # get times to put in search summary table
    start_time = 0
    end_time = 0
    if 'gps_start_time' in optDict.keys() and 'gps_end_time' in optDict.keys():
        start_time = optDict['gps_start_time']
        end_time = optDict['gps_end_time']

    # make search summary table
    search_summary_table = lsctables.New(lsctables.SearchSummaryTable)
    search_summary = return_search_summary(start_time, end_time,
                               len(sngl_inspiral_table), ifos, **kwargs)
    search_summary_table.append(search_summary)
    outdoc.childNodes[0].appendChild(search_summary_table)

    # write the xml doc to disk
    ligolw_utils.write_filename(outdoc, outputFile,
                                gz=outputFile.endswith('.gz'))
Exemple #50
0
    def __init__(self, ifos, coinc_results, **kwargs):
        """Initialize a ligolw xml representation of a zerolag trigger
        for upload from pycbc live to gracedb.

        Parameters
        ----------
        ifos: list of strs
            A list of the ifos pariticipating in this trigger
        coinc_results: dict of values
            A dictionary of values. The format is define
            in pycbc/events/coinc.py
        and matches the on disk representation in the hdf file for this time.
        """
        self.ifos = ifos
        self.template_id = coinc_results['foreground/%s/template_id' %
                                         self.ifos[0]]

        # remember if this should be marked as HWINJ
        self.is_hardware_injection = False
        if 'HWINJ' in coinc_results:
            self.is_hardware_injection = True

        # Set up the bare structure of the xml document
        outdoc = ligolw.Document()
        outdoc.appendChild(ligolw.LIGO_LW())

        proc_id = ligolw_process.register_to_xmldoc(
            outdoc,
            'pycbc', {},
            ifos=ifos,
            comment='',
            version=pycbc_version.git_hash,
            cvs_repository='pycbc/' + pycbc_version.git_branch,
            cvs_entry_time=pycbc_version.date).process_id

        # Set up coinc_definer table
        coinc_def_table = lsctables.New(lsctables.CoincDefTable)
        coinc_def_id = lsctables.CoincDefID(0)
        coinc_def_row = lsctables.CoincDef()
        coinc_def_row.search = "inspiral"
        coinc_def_row.description = "sngl_inspiral<-->sngl_inspiral coincs"
        coinc_def_row.coinc_def_id = coinc_def_id
        coinc_def_row.search_coinc_type = 0
        coinc_def_table.append(coinc_def_row)
        outdoc.childNodes[0].appendChild(coinc_def_table)

        # Set up coinc inspiral and coinc event tables
        coinc_id = lsctables.CoincID(0)
        coinc_event_table = lsctables.New(lsctables.CoincTable)
        coinc_event_row = lsctables.Coinc()
        coinc_event_row.coinc_def_id = coinc_def_id
        coinc_event_row.nevents = len(ifos)
        coinc_event_row.instruments = ','.join(ifos)
        coinc_event_row.time_slide_id = lsctables.TimeSlideID(0)
        coinc_event_row.process_id = proc_id
        coinc_event_row.coinc_event_id = coinc_id
        coinc_event_row.likelihood = 0.
        coinc_event_table.append(coinc_event_row)
        outdoc.childNodes[0].appendChild(coinc_event_table)

        # Set up sngls
        sngl_inspiral_table = lsctables.New(lsctables.SnglInspiralTable)
        coinc_event_map_table = lsctables.New(lsctables.CoincMapTable)

        sngl_id = 0
        sngl_event_id_map = {}
        for ifo in ifos:
            names = [
                n.split('/')[-1] for n in coinc_results
                if 'foreground/%s' % ifo in n
            ]
            sngl_id += 1
            sngl = return_empty_sngl()
            sngl.event_id = lsctables.SnglInspiralID(sngl_id)
            sngl_event_id_map[ifo] = sngl.event_id
            sngl.ifo = ifo
            for name in names:
                val = coinc_results['foreground/%s/%s' % (ifo, name)]
                if name == 'end_time':
                    sngl.set_end(lal.LIGOTimeGPS(val))
                else:
                    try:
                        setattr(sngl, name, val)
                    except AttributeError:
                        pass
            sngl.mtotal, sngl.eta = pnutils.mass1_mass2_to_mtotal_eta(
                sngl.mass1, sngl.mass2)
            sngl.mchirp, _ = pnutils.mass1_mass2_to_mchirp_eta(
                sngl.mass1, sngl.mass2)
            sngl.eff_distance = (sngl.sigmasq)**0.5 / sngl.snr
            sngl_inspiral_table.append(sngl)

            # Set up coinc_map entry
            coinc_map_row = lsctables.CoincMap()
            coinc_map_row.table_name = 'sngl_inspiral'
            coinc_map_row.coinc_event_id = coinc_id
            coinc_map_row.event_id = sngl.event_id
            coinc_event_map_table.append(coinc_map_row)

        outdoc.childNodes[0].appendChild(coinc_event_map_table)
        outdoc.childNodes[0].appendChild(sngl_inspiral_table)

        # Set up the coinc inspiral table
        coinc_inspiral_table = lsctables.New(lsctables.CoincInspiralTable)
        coinc_inspiral_row = lsctables.CoincInspiral()
        # This seems to be used as FAP, which should not be in gracedb
        coinc_inspiral_row.false_alarm_rate = 0
        coinc_inspiral_row.minimum_duration = 0.
        coinc_inspiral_row.set_ifos(ifos)
        coinc_inspiral_row.coinc_event_id = coinc_id
        coinc_inspiral_row.mchirp = sngl.mchirp
        coinc_inspiral_row.mass = sngl.mtotal
        coinc_inspiral_row.end_time = sngl.end_time
        coinc_inspiral_row.end_time_ns = sngl.end_time_ns
        coinc_inspiral_row.snr = coinc_results['foreground/stat']
        far = 1.0 / (lal.YRJUL_SI * coinc_results['foreground/ifar'])
        coinc_inspiral_row.combined_far = far
        coinc_inspiral_table.append(coinc_inspiral_row)
        outdoc.childNodes[0].appendChild(coinc_inspiral_table)
        self.outdoc = outdoc
        self.time = sngl.get_end()

        # compute SNR time series
        self.upload_snr_series = kwargs['upload_snr_series']
        if self.upload_snr_series:
            data_readers = kwargs['data_readers']
            bank = kwargs['bank']
            htilde = bank[self.template_id]
            self.snr_series = {}
            self.snr_series_psd = {}
            for ifo in self.ifos:
                stilde = data_readers[ifo].overwhitened_data(htilde.delta_f)
                norm = 4.0 * htilde.delta_f / (htilde.sigmasq(stilde.psd)**0.5)
                qtilde = zeros((len(htilde) - 1) * 2, dtype=htilde.dtype)
                correlate(htilde, stilde, qtilde)
                snr = qtilde * 0
                ifft(qtilde, snr)

                valid_end = int(len(qtilde) - data_readers[ifo].trim_padding)
                valid_start = int(valid_end - data_readers[ifo].blocksize *
                                  data_readers[ifo].sample_rate)
                seg = slice(valid_start, valid_end)
                snr = snr[seg]
                snr *= norm
                delta_t = 1.0 / data_readers[ifo].sample_rate
                start = data_readers[ifo].start_time
                snr = TimeSeries(snr, delta_t=delta_t, epoch=start)
                self.snr_series[ifo] = snr
                self.snr_series_psd[ifo] = stilde.psd

                # store the on-source slice of the series into the XML doc
                snr_onsource_time = coinc_results['foreground/%s/end_time' %
                                                  ifo] - snr.start_time
                snr_onsource_dur = lal.REARTH_SI / lal.C_SI
                onsource_idx = round(snr_onsource_time * snr.sample_rate)
                onsource_start = onsource_idx - int(
                    snr.sample_rate * snr_onsource_dur / 2)
                onsource_end = onsource_idx + int(
                    snr.sample_rate * snr_onsource_dur / 2)
                onsource_slice = slice(onsource_start, onsource_end + 1)
                snr_lal = snr[onsource_slice].lal()
                snr_lal.name = 'snr'
                snr_lal.sampleUnits = ''
                snr_xml = _build_series(snr_lal,
                                        (u'Time', u'Time,Real,Imaginary'),
                                        None, 'deltaT', 's')
                snr_node = outdoc.childNodes[-1].appendChild(snr_xml)
                eid_param = ligolw_param.new_param(
                    u'event_id', u'ilwd:char', unicode(sngl_event_id_map[ifo]))
                snr_node.appendChild(eid_param)