Exemple #1
0
def evaluate_accuracy(data_iter, net, ctx):
    acc = nd.array([0], ctx=ctx)
    for X, y in data_iter:
        # 如果ctx是GPU,则将数据集复制到GPU上
        X, y = X.as_in_context(ctx), y.as_in_context(ctx)
        acc += gb.accuracy(net(X), y)
    return acc.asscalar() / len(data_iter)
Exemple #2
0
def train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs):
    """Train and evaluate a model on CPU or GPU."""
    print('training on', ctx)
    loss = gloss.SoftmaxCrossEntropyLoss()
    for epoch in range(1, num_epochs + 1):
        train_l_sum = 0
        train_acc_sum = 0
        num_add = 0
        start = time.time()
        for X, y in train_iter:
            X, y = X.as_in_context(ctx), y.as_in_context(ctx)
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat, y)
            l.backward()
            trainer.step(batch_size)
            train_l_sum += l.mean().asscalar()
            train_acc_sum += accuracy(y_hat, y)
            num_add += 1
        # test_acc = evaluate_accuracy(test_iter, net, ctx)
        test_acc = 0
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
              'time %.1f sec'
              % (epoch, train_l_sum / num_add,
                 train_acc_sum / num_add, test_acc, time.time() - start))
Exemple #3
0
def train(net,train_iterator,test_iterator,num_epochs,lr,wd,ctx,lr_period,lr_decay):
    # 只训练我们定义的输出网络
    trainer=gluon.Trainer(net.output_new.collect_params(),'sgd',
                          {'learning_rate':lr,'momentum':0.9,'wd':wd})

    prev_time=datetime.datetime.now()
    for epoch in range(num_epochs):
#         train_iter=data_iter(prefix,foldername,batch_size,True)
        train_iter=train_iterator(batch_size)
        test_iter=test_iterator(batch_size,False)
        train_l=0.0
        train_acc=0.0
        train_n=0
#         if epoch > 0 and epoch % lr_period == 0:
#             trainer.set_learning_rate(trainer.learning_rate*lr_decay)
        num=0.
        for X,y,n in train_iter:
            if n==0:
                continue
            y=y.astype('float32').as_in_context(ctx)
            output_features=net.features(X.as_in_context(ctx))
            with autograd.record():
                y_hat=net.output_new(output_features)
                l=loss(y_hat,y)
            l.backward()
            trainer.step(n)
            train_l+=l.mean().asscalar()
            train_acc+=gb.accuracy(y_hat,y)
            num+=1
            train_n+=n
#         print ("train samples:%d"%(train_n))
        cur_time=datetime.datetime.now()
        h,remainder=divmod((cur_time-prev_time).seconds,3600)
        m,s=divmod(remainder,60)
        time_s="time %02d:%02d:%02d"%(h,m,s)
        test_acc=evaluate_accuracy(test_iter,net,ctx)
        if num==0.:
            epoch_s=("epoch %d, loss %f, train acc %f, test acc %f, "
                      % (epoch, train_l ,
                      train_acc, test_acc))
        else:
            epoch_s=("epoch %d, loss %f, train acc %f, test acc %f, "
                      % (epoch, train_l / num,
                      train_acc / num, test_acc))
        prev_time=cur_time
        print(epoch_s+time_s+',lr '+str(trainer.learning_rate))
Exemple #4
0
def evaluate_accuracy(data_iter,net,ctx):
    acc=0.
    num=0.
    test_n=0
    for X,y,n in data_iter:
        if n==0:
            continue
        y=y.astype('float32').as_in_context(ctx)
        output_features=net.features(X.as_in_context(ctx))
        y_hat=net.output_new(output_features)
        acc+=gb.accuracy(y_hat,y)
        num+=1
        test_n+=n
#     print ("test samples:%d"%(test_n))
    if num==0.:
        return acc
    else:
        return acc/num
Exemple #5
0
def train_ch5(net, train_iter, test_iter, loss, batch_size, trainer,
              num_epochs):
    for epoch in range(1, num_epochs + 1):
        train_l_sum = 0
        train_acc_sum = 0
        start = time()
        for X, y in train_iter:
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat, y)
            l.backward()
            trainer.step(batch_size)
            train_l_sum += l.mean().asscalar()
            train_acc_sum += gb.accuracy(y_hat, y)
        test_acc = evaluate_accuracy(test_iter, net)
        print(
            "epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %1f sec"
            % (epoch, train_l_sum / len(train_iter),
               train_acc_sum / len(train_iter), test_acc, time() - start))
Exemple #6
0
def train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs):
    print('training on', ctx)
    loss = gloss.SoftmaxCrossEntropyLoss()
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, start = 0, 0, time.time()
        for X, y in train_iter:
            X, y = X.as_in_context(ctx), y.as_in_context(ctx)
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat, y)
            l.backward()
            trainer.step(batch_size)
            train_l_sum += l.mean().asscalar()
            train_acc_sum += gb.accuracy(y_hat, y)

        test_acc = evaluate_accuracy(test_iter, net, ctx)
        print(
            'epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
            % (epoch + 1, train_l_sum / len(train_iter),
               train_acc_sum / len(train_iter), test_acc, time.time() - start))
def train(net, train_data, valid_data, num_epochs, lr, wd, ctx, lr_period,
          lr_decay):
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {
        'learning_rate': lr,
        'momentum': 0.9,
        'wd': wd
    })

    prev_time = datetime.datetime.now()
    for epoch in range(num_epochs):
        train_loss = 0.0
        train_acc = 0.0
        if epoch > 0 and epoch % lr_period == 0:
            trainer.set_learning_rate(trainer.learning_rate * lr_decay)
        for data, label in train_data:
            label = label.astype('float32').as_in_context(ctx)
            with autograd.record():
                output = net(data.as_in_context(ctx))
                loss = softmax_cross_entropy(output, label)
            loss.backward()
            trainer.step(batch_size)
            train_loss += nd.mean(loss).asscalar()
            train_acc += gb.accuracy(output, label)
        cur_time = datetime.datetime.now()
        h, remainder = divmod((cur_time - prev_time).seconds, 3600)
        m, s = divmod(remainder, 60)
        time_str = "Time %02d:%02d:%02d" % (h, m, s)
        if valid_data is not None:
            valid_acc = gb.evaluate_accuracy(valid_data, net, ctx)
            epoch_str = ("Epoch %d. Loss: %f, Train acc %f, Valid acc %f, " %
                         (epoch, train_loss / len(train_data),
                          train_acc / len(train_data), valid_acc))
        else:
            epoch_str = ("Epoch %d. Loss: %f, Train acc %f, " %
                         (epoch, train_loss / len(train_data),
                          train_acc / len(train_data)))
        prev_time = cur_time
        print(epoch_str + time_str + ', lr ' + str(trainer.learning_rate))
Exemple #8
0
def vgg():
    print 'programe begin'
    train_pic_list, train_label_list = get_pic_dogandcat(TRAIN_DATA_SIZE)
    test_pic_list, test_label_list = get_pic_dogandcat(TEST_DATA_SIZE)
    train_dataset = gluon.data.ArrayDataset(train_pic_list, train_label_list)
    train_data_iter = gluon.data.DataLoader(train_dataset,
                                            batch_size=BATCH_SIZE,
                                            shuffle=True)
    test_dataset = gluon.data.ArrayDataset(test_pic_list, test_label_list)
    test_data_iter = gluon.data.DataLoader(test_dataset,
                                           batch_size=TEST_DATA_SIZE,
                                           shuffle=True)
    # train_data_iter = mx.image.ImageIter(batch_size=BATCH_SIZE, data_shape=(3, 224, 224),
    #                                      path_imglist='train.lst')
    # train_data_iter.reset()
    print 'dataset created'
    with mx.Context(mx.gpu()):
        net = nn.Sequential()
        net.add(
            nn.Conv2D(channels=64,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=3))
        net.add(
            nn.Conv2D(channels=64,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=64))
        net.add(nn.MaxPool2D(pool_size=2, strides=2))
        net.add(
            nn.Conv2D(channels=128,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=64))
        net.add(
            nn.Conv2D(channels=128,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=128))
        net.add(nn.MaxPool2D(pool_size=2, strides=2))
        net.add(
            nn.Conv2D(channels=256,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=128))
        net.add(
            nn.Conv2D(channels=256,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=256))
        net.add(
            nn.Conv2D(channels=256,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=256))
        net.add(nn.MaxPool2D(pool_size=2, strides=2))
        net.add(
            nn.Conv2D(channels=512,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=256))
        net.add(
            nn.Conv2D(channels=512,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=512))
        net.add(
            nn.Conv2D(channels=512,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=512))
        net.add(nn.MaxPool2D(pool_size=2, strides=2))
        net.add(
            nn.Conv2D(channels=512,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=512))
        net.add(
            nn.Conv2D(channels=512,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=512))
        net.add(
            nn.Conv2D(channels=512,
                      kernel_size=(3, 3),
                      strides=(1, 1),
                      padding=(1, 1),
                      activation='relu',
                      in_channels=512))
        net.add(nn.MaxPool2D(pool_size=2, strides=2))
        net.add(nn.Dense(4096, activation='relu', in_units=7 * 7 * 512))
        net.add(nn.Dropout(DROPOUT_RATE))
        net.add(nn.Dense(4096, activation='relu', in_units=4096))
        net.add(nn.Dropout(DROPOUT_RATE))
        net.add(nn.Dense(2, in_units=4096))
        print 'net created'
        net.initialize()
        ####################
        X = nd.random.uniform(shape=(BATCH_SIZE, 3, 224, 224))
        for blk in net:
            X = blk(X)
            print(blk.name, 'output shape:\t', X.shape)
        # exit()
        # net(train_pic_list[0])
        ####################
        loss = gluon.loss.SoftmaxCrossEntropyLoss()
        learning_rate = 0.01
        trainer = gluon.Trainer(net.collect_params(), 'adam',
                                {'learning_rate': learning_rate})
        num_epoch = 1000
        print 'train begin'
        for epoch in range(num_epoch):
            start_time = time.time()
            train_l_sum = 0
            train_acc_sum = 0
            num_add = 1
            for X, y in train_data_iter:
                X = X.copyto(mx.gpu())
                y = y.copyto(mx.gpu())
                with autograd.record():
                    y_predict = net(X)
                    l = loss(net(X), y)
                l.backward()
                trainer.step(batch_size=BATCH_SIZE)
                train_l_sum += l.mean().asscalar()
                train_acc_sum += gb.accuracy(y_predict, y)
                num_add += 1
            if (epoch != 0 and epoch % 3 == 0):
                learning_rate = learning_rate * 0.9
                trainer.set_learning_rate(learning_rate)
            test_acc = evaluate_accuracy(test_data_iter, net)
            # test_acc = 0
            time1 = time.time() - start_time
            print(
                'epoch %3d, loss %.8f, train acc %.8f, test acc %.8f, learning_rate: %.8f, Time: %.3fs, predict_time: %dmin%ds'
                % (epoch + 1, train_l_sum / num_add, train_acc_sum / num_add,
                   test_acc, trainer.learning_rate, time1,
                   int(time1 * (num_epoch - epoch - 1) / 60), time1 *
                   (num_epoch - epoch - 1) % 60))
Exemple #9
0
def evaluate_accuracy(data_iter, net):
    acc = nd.array([0])
    for X, y in data_iter:
        acc += gb.accuracy(net(X), y)
    return acc.asscalar() / len(data_iter)
Exemple #10
0
    # print small_conv_arch
    ctx = mx.gpu()
    net = vgg()
    net.initialize(init.Xavier(), ctx=ctx)
    train_iter, test_iter = get_iter()
    loss = gloss.SoftmaxCrossEntropyLoss()
    num_epochs = 100
    batch_size = BATCH_SIZE
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001})
    for epoch in range(1, num_epochs + 1):
        train_l_sum = 0
        train_acc_sum = 0
        num_add = 0
        start = time.time()
        for X, y in train_iter:
            X, y = X.as_in_context(ctx), y.as_in_context(ctx)
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat, y)
            l.backward()
            trainer.step(batch_size)
            train_l_sum += l.mean().asscalar()
            train_acc_sum += accuracy(y_hat, y)
            num_add += 1
        # test_acc = evaluate_accuracy(test_iter, net, ctx)
        test_acc = 0
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
              'time %.1f sec'
              % (epoch, train_l_sum / num_add,
                 train_acc_sum / num_add, test_acc, time.time() - start))
Exemple #11
0
def train(net, train_data, valid_data, num_epochs, lr, wd, ctx, lr_period,
          lr_decay):
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {
        'learning_rate': lr,
        'momentum': 0.9,
        'wd': wd
    })
    prev_time = datetime.datetime.now()
    for epoch in range(num_epochs):
        train_l, train_acc = 0.0, 0.0

        if epoch > 0 and epoch % lr_period == 0:
            trainer.set_learning_rate(trainer.learning_rate * lr_decay)
            print('e=' + str(epoch) + ' lr=' +
                  str(trainer.learning_rate * lr_decay))

        iii = 0
        for X, y in train_data:
            iii += 1
            print('... {:.1f}% ...'.format(iii * 100 / len(train_data)),
                  end='\r')
            # X=nd.swapaxes(X,1,3)
            # X=nd.swapaxes(X,2,3)
            y = y.as_in_context(ctx)
            #            import pdb; pdb.set_trace() ###
            with autograd.record():
                y_hat = net(X.astype('float32').as_in_context(ctx))
                l = loss(y_hat, y)
            l.backward()
            trainer.step(batch_size)
            train_l += l.mean().asscalar()
            train_acc += gb.accuracy(y_hat, y)

        cur_time = datetime.datetime.now()
        h, remainder = divmod((cur_time - prev_time).seconds, 3600)
        m, s = divmod(remainder, 60)
        time_s = "time %02d:%02d:%02d" % (h, m, s)

        if valid_data is not None:
            valid_acc = 0
            iii = 0
            for X, y in valid_data:
                iii += 1
                print('... {:.1f}% ...'.format(iii * 100 / len(valid_data)),
                      end='\r')
                # X=nd.swapaxes(X,1,3)
                # X=nd.swapaxes(X,2,3)
                y = y.as_in_context(ctx)
                val_y_hat = net(X.astype('float32').as_in_context(ctx))
                valid_acc += gb.accuracy(val_y_hat, y)
            epoch_s = ("epoch %d, loss %f, train acc %f, valid acc %f, " %
                       (epoch + 1, train_l / len(train_data), train_acc /
                        len(train_data), valid_acc / len(valid_data)))
        else:
            epoch_s = ("epoch %d, loss %f, train acc %f, " %
                       (epoch + 1, train_l / len(train_data),
                        train_acc / len(train_data)))

        prev_time = cur_time
        print(epoch_s + time_s)  # + ', lr ' + str(trainer.learning_rate))
        net.save_parameters('./params_ffn/dbc_' + str(epoch + 16) + '.param')
        print('model saved')
Exemple #12
0
 # 然后通过lr_scheduler.learning_rate -= 0.01 让学习率随着epoch线性递减。
 learning_rate = 0.001
 trainer = gluon.Trainer(net.collect_params(), 'sgd',
                         {'learning_rate': learning_rate})
 num_eproch = 100
 for epoch in range(num_eproch):
     start_time = time.time()
     train_l_sum = 0
     train_acc_sum = 0
     num_add = 0
     for X, y in train_data_iter:
         with autograd.record():
             y_predict = net(X)
             l = loss(net(X), y)
         l.backward()
         trainer.step(batch_size=BATCH_SIZE)
         train_l_sum += l.mean().asscalar()
         train_acc_sum += gb.accuracy(y_predict, y)
         num_add += 1
     if (epoch != 0 and epoch % 3 == 0):
         learning_rate = learning_rate * 0.9
         trainer.set_learning_rate(learning_rate)
     test_acc = evaluate_accuracy(test_data_iter, net)
     time1 = time.time() - start_time
     print(
         'epoch %3d, loss %.8f, train acc %.8f, test acc %.8f, learning_rate: %.8f, Time: %.3fs, predict_time: %dmin%ds'
         %
         (epoch + 1, train_l_sum / len(train_data_iter), train_acc_sum /
          len(train_data_iter), test_acc, trainer.learning_rate, time1,
          int(time1 * (num_eproch - epoch - 1) / 60), time1 *
          (num_eproch - epoch - 1) % 60))
Exemple #13
0
        train_iter.reset()
        test_iter.reset()
        num_batch = 1
        train_l_sum = 0
        train_acc_sum = 0
        train_time_sum = 0
        read_time_sum = 0
        test_time_sum = 0
        for data_cpu in train_iter:
            start1 = time.time()
            X = data_cpu.data[0].copyto(mx.gpu()) / 255
            Y_true = data_cpu.label[0].copyto(mx.gpu())
            read_time_sum += (time.time() - start1)
            start2 = time.time()
            with autograd.record():
                y_predict = net(X)
                l = loss(y_predict, Y_true)
            l.backward()
            trainer.step(batch_size=BATCH_SIZE)
            train_time_sum += (time.time() - start2)
            start3 = time.time()
            train_l_sum += l.mean().asscalar()
            train_acc_sum += gb.accuracy(y_predict, Y_true)
            num_batch += 1
            test_time_sum += (time.time() - start3)
            print epoch, num_batch, train_l_sum / num_batch, train_acc_sum / num_batch
            print 'read_time_sum:', read_time_sum, '  arg:', read_time_sum / num_batch
            print 'train_time_sum:', train_time_sum, '  arg:', train_time_sum / num_batch
            print 'test_time_sum:', test_time_sum, '  arg:', test_time_sum / num_batch
            print 'total_time:', total_time_start - time.time()