Exemple #1
0
    def _validate_data(self, data):
        """Check whether data is valid, try to convert with best effort if not"""
        if isinstance(data, pd.DataFrame):
            # TODO(zhreshold): allow custom label column without this renaming trick
            if self._label != 'label' and self._label in data.columns:
                # data is deepcopied so it's okay to overwrite directly
                data = data.rename(columns={
                    'label': '_unused_label',
                    self._label: 'label'
                },
                                   errors='ignore')

        if not (hasattr(data, 'classes') and hasattr(data, 'to_mxnet')):
            if isinstance(data, pd.DataFrame):
                # raw dataframe, try to add metadata automatically
                if 'label' in data.columns and 'image' in data.columns:
                    # check image relative/abs path is valid
                    sample = data.iloc[0]['image']
                    if not os.path.isfile(sample):
                        raise OSError(
                            f'Detected invalid image path `{sample}`, please ensure all image paths are absolute or you are using the right working directory.'
                        )
                    logger.log(
                        20,
                        'Converting raw DataFrame to ImagePredictor.Dataset...'
                    )
                    infer_classes = sorted(data.label.unique().tolist())
                    logger.log(
                        20,
                        f'Detected {len(infer_classes)} unique classes: {infer_classes}'
                    )
                    instruction = 'train_data = ImagePredictor.Dataset(train_data, classes=["foo", "bar"])'
                    logger.log(
                        20,
                        f'If you feel the `classes` is inaccurate, please construct the dataset explicitly, e.g. {instruction}'
                    )
                    data = _ImageClassification.Dataset(data,
                                                        classes=infer_classes)
                else:
                    err_msg = 'Unable to convert raw DataFrame to ImagePredictor Dataset, ' + \
                              '`image` and `label` columns are required.' + \
                              'You may visit `https://auto.gluon.ai/stable/tutorials/image_prediction/dataset.html` ' + \
                              'for details.'
                    raise AttributeError(err_msg)
            else:
                raise TypeError(
                    f"Unable to process dataset of type: {type(data)}")
        elif isinstance(data, _ImageClassification.Dataset):
            assert 'label' in data.columns
            assert hasattr(data, 'classes')
            # check whether classes are outdated, no action required if all unique labels is subset of `classes`
            unique_labels = sorted(data['label'].unique().tolist())
            if not (all(ulabel in data.classes for ulabel in unique_labels)):
                data = _ImageClassification.Dataset(data,
                                                    classes=unique_labels)
                logger.log(20, f'Reset labels to {unique_labels}')
        if len(data) < 1:
            raise ValueError('Empty dataset.')
        return data
Exemple #2
0
def test_time_out_image_classification():
    time_limit = 30
    from gluoncv.auto.tasks import ImageClassification
    task = ImageClassification({'num_trials': 1, 'epochs': 50})

    tic = time.time()
    classifier = task.fit(IMAGE_CLASS_DATASET, time_limit=time_limit)
    # check time_limit with a little bit overhead
    assert (time.time() - tic) < time_limit + 180
Exemple #3
0
def test_torch_image_classification_custom_net():
    from gluoncv.auto.tasks import ImageClassification
    from timm import create_model
    import torch.nn as nn
    net = create_model('resnet18')
    net.fc = nn.Linear(512, 4)
    task = ImageClassification({'num_trials': 1, 'epochs': 1, 'custom_net': net, 'batch_size': 8})
    classifier = task.fit(IMAGE_CLASS_DATASET)
    assert task.fit_summary().get('valid_acc', 0) > 0
    test_result = classifier.predict(IMAGE_CLASS_TEST)
Exemple #4
0
def test_image_classification():
    from gluoncv.auto.tasks import ImageClassification
    task = ImageClassification({
        'model': 'resnet18_v1',
        'num_trials': 1,
        'epochs': 1,
        'batch_size': 8
    })
    classifier = task.fit(IMAGE_CLASS_DATASET)
    assert task.fit_summary().get('valid_acc', 0) > 0
    test_result = classifier.predict(IMAGE_CLASS_TEST)
Exemple #5
0
def test_image_classification_custom_net():
    from gluoncv.auto.tasks import ImageClassification
    from gluoncv.model_zoo import get_model
    net = get_model('resnet18_v1')
    task = ImageClassification({
        'num_trials': 1,
        'epochs': 1,
        'custom_net': net
    })
    classifier = task.fit(IMAGE_CLASS_DATASET)
    assert task.fit_summary().get('valid_acc', 0) > 0
    test_result = classifier.predict(IMAGE_CLASS_TEST)
Exemple #6
0
 def _validate_data(self, data):
     """Check whether data is valid, try to convert with best effort if not"""
     if not (hasattr(data, 'classes') and hasattr(data, 'to_mxnet')):
         if isinstance(data, pd.DataFrame):
             # raw dataframe, try to add metadata automatically
             if 'label' in data.columns and 'image' in data.columns:
                 # check image relative/abs path is valid
                 sample = data.iloc[0]['image']
                 if not os.path.isfile(sample):
                     raise OSError(f'Detected invalid image path `{sample}`, please ensure all image paths are absolute or you are using the right working directory.')
                 logger.log(20, 'Converting raw DataFrame to ImagePredictor.Dataset...')
                 infer_classes = list(data.label.unique().tolist())
                 logger.log(20, f'Detected {len(infer_classes)} unique classes: {infer_classes}')
                 instruction = 'train_data = ImagePredictor.Dataset(train_data, classes=["foo", "bar"])'
                 logger.log(20, f'If you feel the `classes` is inaccurate, please construct the dataset explicitly, e.g. {instruction}')
                 data = _ImageClassification.Dataset(data, classes=infer_classes)
             else:
                 err_msg = 'Unable to convert raw DataFrame to ImagePredictor Dataset, ' + \
                           '`image` and `label` columns are required.' + \
                           'You may visit `https://auto.gluon.ai/stable/tutorials/image_prediction/dataset.html` ' + \
                           'for details.'
                 raise AttributeError(err_msg)
     if len(data) < 1:
         raise ValueError('Empty dataset.')
     return data
Exemple #7
0
def test_image_classification():
    from gluoncv.auto.tasks import ImageClassification
    task = ImageClassification({'num_trials': 1})
    classifier = task.fit(IMAGE_CLASS_DATASET)
    assert task.fit_summary.get('valid_acc', 0) > 0
    test_result = classifier.predict(IMAGE_CLASS_TEST)
        'batch_size':
        ag.Int(4, 7),  # [16, 32, 64, 128]
        'momentum':
        ag.Real(0.85, 0.95),
        'wd':
        ag.Real(1e-6, 1e-2, log=True),
        'epochs':
        15,
        'num_trials':
        args.num_trials,
        'search_strategy':
        'bayesopt'
    }

    # specify learning task
    task = ImageClassification(config)

    # specify dataset
    dataset = Dataset.get(args.dataset)
    train_data, valid_data = dataset.split(0.8)

    # fit auto estimator
    classifier = task.fit(train_data, valid_data)

    # evaluate auto estimator
    top1, top5 = classifier.evaluate(valid_data)
    logging.info('evaluation: top1={}, top5={}'.format(top1, top5))

    # save and load auto estimator
    classifier.save('classifier.pkl')
    classifier = ImageClassification.load('classifier.pkl')