Exemple #1
0
def test_transforms_presets_ssd():
    im_fname = gcv.utils.download('https://github.com/dmlc/web-data/blob/master/' +
                                  'gluoncv/detection/biking.jpg?raw=true', path='biking.jpg')
    x, orig_img = ssd.load_test(im_fname, short=512)
    x1, orig_img1 = ssd.transform_test(mx.image.imread(im_fname), short=512)
    np.testing.assert_allclose(x.asnumpy(), x1.asnumpy())
    np.testing.assert_allclose(orig_img, orig_img1)
    if not osp.isdir(osp.expanduser('~/.mxnet/datasets/voc')):
        return
    train_dataset = VOCDetectionTiny()
    val_dataset = VOCDetectionTiny(splits=[('tiny_motorbike', 'test')])
    width, height = (512, 512)
    net = gcv.model_zoo.get_model('ssd_512_resnet50_v1_voc', pretrained=False, pretrained_base=False)
    net.initialize()
    num_workers = 0
    batch_size = 4
    with autograd.train_mode():
        _, _, anchors = net(mx.nd.zeros((1, 3, height, width)))
    batchify_fn = Tuple(Stack(), Stack(), Stack())  # stack image, cls_targets, box_targets
    train_loader = gluon.data.DataLoader(
        train_dataset.transform(ssd.SSDDefaultTrainTransform(width, height, anchors)),
        batch_size, True, batchify_fn=batchify_fn, last_batch='rollover', num_workers=num_workers)
    val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1))
    val_loader = gluon.data.DataLoader(
        val_dataset.transform(ssd.SSDDefaultValTransform(width, height)),
        batch_size, False, batchify_fn=val_batchify_fn, last_batch='keep', num_workers=num_workers)
    train_loader2 = gluon.data.DataLoader(
        train_dataset.transform(ssd.SSDDefaultTrainTransform(width, height)),
        batch_size, True, batchify_fn=val_batchify_fn, last_batch='rollover', num_workers=num_workers)

    for loader in [train_loader, val_loader, train_loader2]:
        for i, batch in enumerate(loader):
            if i > 1:
                break
            pass
def test_transforms_presets_ssd():
    im_fname = gcv.utils.download('https://github.com/dmlc/web-data/blob/master/' +
                                  'gluoncv/detection/biking.jpg?raw=true', path='biking.jpg')
    x, orig_img = ssd.load_test(im_fname, short=512)
    x1, orig_img1 = ssd.transform_test(mx.image.imread(im_fname), short=512)
    np.testing.assert_allclose(x.asnumpy(), x1.asnumpy())
    np.testing.assert_allclose(orig_img, orig_img1)
    if not osp.isdir(osp.expanduser('~/.mxnet/datasets/voc')):
        return
    train_dataset = gcv.data.VOCDetection(splits=((2007, 'trainval'), (2012, 'trainval')))
    val_dataset = gcv.data.VOCDetection(splits=[(2007, 'test')])
    width, height = (512, 512)
    net = gcv.model_zoo.get_model('ssd_512_resnet50_v1_voc', pretrained=False, pretrained_base=False)
    net.initialize()
    num_workers = 0
    batch_size = 4
    with autograd.train_mode():
        _, _, anchors = net(mx.nd.zeros((1, 3, height, width)))
    batchify_fn = Tuple(Stack(), Stack(), Stack())  # stack image, cls_targets, box_targets
    train_loader = gluon.data.DataLoader(
        train_dataset.transform(ssd.SSDDefaultTrainTransform(width, height, anchors)),
        batch_size, True, batchify_fn=batchify_fn, last_batch='rollover', num_workers=num_workers)
    val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1))
    val_loader = gluon.data.DataLoader(
        val_dataset.transform(ssd.SSDDefaultValTransform(width, height)),
        batch_size, False, batchify_fn=val_batchify_fn, last_batch='keep', num_workers=num_workers)
    train_loader2 = gluon.data.DataLoader(
        train_dataset.transform(ssd.SSDDefaultTrainTransform(width, height)),
        batch_size, True, batchify_fn=val_batchify_fn, last_batch='rollover', num_workers=num_workers)

    for loader in [train_loader, val_loader, train_loader2]:
        for i, batch in enumerate(loader):
            if i > 1:
                break
            pass
Exemple #3
0
def detect(event, context):
    # get the url
    data = json.loads(event['body'])

    if 'url' not in data:
        response = {"statusCode": 500, "body": "Please specify a url"}
        return response

    url = data['url']
    # download the image
    urlSplit = url.split('/')
    fileName = urlSplit[-1]
    filePath = wget.download(url, out="/tmp/{0}".format(fileName))

    # classify the image
    x, img = load_test(filePath, short=512)
    classes, scores, bbox = ssdnet(x)

    results = []

    # for each result, we'll take the each
    # them if their score is greater than a given threshold
    for i in range(len(scores[0])):
        if float(scores[0][i].asnumpy().tolist()[0]) > score_threshold:
            results.append({
                "class":
                ssdnet.classes[int(classes[0][i].asnumpy().tolist()[0])],
                "score":
                float(scores[0][i].asnumpy().tolist()[0]),
                "bbox":
                bbox[0][i].asnumpy().tolist()
            })

    # plot the box of the image and then store it in S3
    plot_bbox(img, bbox[0], scores[0], classes[0], class_names=ssdnet.classes)

    tmpOutPath = "/tmp/detect_{0}".format(fileName)
    plt.savefig(tmpOutPath)

    s3_key = "images/detect_{0}".format(fileName)
    s3_bucket_name = "gudongfeng.me"
    s3.upload_file(tmpOutPath, s3_bucket_name, s3_key)

    body = {
        "bounding_boxes": results,
        "s3_url": getS3Url(s3_bucket_name, s3_key)
    }

    response = {
        "statusCode": 200,
        "body": json.dumps(body),
        "headers": {
            'Access-Control-Allow-Origin': '*',
            'Access-Control-Allow-Credentials': True,
            'Content-Type': 'application/json'
        },
    }

    return response
Exemple #4
0
def detect(event, context):

  # get the url
  url = event.get('url', None)

  if not url:
    response = {
      "statusCode": 500,
      "body": "Please specify a url"
    }
    return response

  # download the image
  filename = wget.download(url, out="/tmp/image.jpg")

  # classify the image
  x, _ = load_test(filename, short=512)
  classes, scores, bbox = ssdnet(x)

  results = []

  # for each result, we'll take the each
  # them if their score is greater than a given threshold
  for i in range(len(scores[0])):
      if float(scores[0][i].asnumpy().tolist()[0]) > score_threshold:
        results.append({
          "class": ssdnet.classes[int(classes[0][i].asnumpy().tolist()[0])],
          "score": float(scores[0][i].asnumpy().tolist()[0]),
          "bbox": bbox[0][i].asnumpy().tolist()
        })
    

  body = {
      "bounding_boxes": results
  }

  response = {
      "statusCode": 200,
      "body": body
  }

  return response