Exemple #1
0
 def _get_decoder(self, units, vocab_size, embed, prefix):
     """ Construct a decoder for the masked language model task """
     with self.name_scope():
         decoder = nn.HybridSequential(prefix=prefix)
         decoder.add(nn.Dense(units, flatten=False))
         decoder.add(GELU())
         decoder.add(BERTLayerNorm(in_channels=units))
         decoder.add(nn.Dense(vocab_size, flatten=False, params=embed.collect_params()))
     assert decoder[3].weight == list(embed.collect_params().values())[0], \
         'The weights of word embedding are not tied with those of decoder'
     return decoder
Exemple #2
0
 def __init__(self, units, hidden_size,
              weight_initializer=mx.init.Normal(0.02), bias_initializer='zeros',
              prefix=None, params=None):
     super(GPT2FFNLayer, self).__init__(prefix=prefix, params=params)
     self._units = units
     self._hidden_size = hidden_size
     with self.name_scope():
         self._hidden_map = nn.Dense(flatten=False, units=hidden_size,
                                     weight_initializer=weight_initializer,
                                     bias_initializer=bias_initializer)
         self._out_map = nn.Dense(flatten=False, units=units,
                                  weight_initializer=weight_initializer,
                                  bias_initializer=bias_initializer)
         self._act = GELU()